Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition

动机:
为了在两个单独的任务网络之间共享特征表示,传统的方法,如Cross-Stitch和Sluice网络学习特征或特征子空间的线性组合。然而,线性组合排除了通道之间复杂的相互依赖关系。此外,空间信息交换的考虑较少。

贡献:
提出了一种新的共注意共享(co - Sharing, CAS)模块,该模块提取识别通道和空间区域,从而在行人属性识别中实现两个任务网络之间更有效的特征共享。它包括三个分支:协同分支、注意分支和特定任务分支。它们利用共享的中间向量产生的三种不同的信道关注,并发挥不同的作用。协同分支融合每个任务中选择的特征,生成增强的特征和空间注意力地图。注意分支计算全局特性注意,而任务特定的分支突出每个任务中的重要通道。最后,将三个分支的结果组合在一起作为模块的输出。

框架:
在这里插入图片描述
由上图可以看出,分为三个分支Synergetic Branch,Attentive Branch.和Task-specific Branch,Synergetic Branch目的是从两个任务中选择的信息中提取识别特征和空间注意图;Attentive Branch目的是解决尽管空间注意图具有信息性,但直觉上它可能只对某些需要空间正规化的通道有用的问题;Task-specific Branch目的是通过增强每个任务的自身特征来进一步改进该特征。
实验:
在PA-100K和PETA数据集上进行实验,使用两个预训练实例化多任务网络ResNet-34 。CAS模块被插入到第1层到4层软参数共享,
在这里插入图片描述
在这里插入图片描述
通过可视化每个层和每个网络的空间注意力来提供定性结果,如下图:
在这里插入图片描述
作者进行了细致的消融实验,实验如下表所示:
在这里插入图片描述
前三部分分别代表三个分支的影响,第四部分是channel attention的影响。
在这里插入图片描述
上表是对输入方式不同获得的结果。前两种进行了分组,最后一种是随机的。
在这里插入图片描述
在这里插入图片描述
CAS模块是插入到网络中,通过上表可以看出最有效的集成位置是第2层和第3层。通常,网络中插入的CAS模块越多,它的F1值就越高。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值