An Attention-Based Deep Learning Model for Multiple Pedestrian Attributes Recognition

动机:
1.考虑到不同的全身属性之间的语义相关性强。
2.每一类占得权重大小影响属性的识别程度,比如说背景和前景的比重

贡献:
1.提出了一种PAR的多任务分类模型,其主要特征是聚焦于前景(人体)特征,减弱特征表示中背景区域的影响;
2.提出了一个加权和损失函数,有效处理优化机制中每个类别(如性别、身材、年龄等)的贡献,在推理步骤中禁止某些类别占主导地位;
3.受到注意机制的启发,实现了一个元素级的乘法层,它在卷积层的输出中模拟了硬注意,这特别提高了在高度异构的数据获取环境中特征表示的鲁棒性。

框架:
在这里插入图片描述
该框架主要分为四部分,卷积层,作为通用的特征提取器;体分割模块,负责识别前景/背景区域;乘法层,即在实践中实现注意机制;以任务为导向的分支,避免了在推理步骤中某些标签相对于其他标签的优势。
首先,输入图像提供一组卷积层,其中提取局部和全局特征。接下来,使用身体分割模块来获得行人身体的二进制掩码。这个遮罩用于删除背景特征,通过元素与特征映射的相乘实现。
然后使用平均池策略对产生的特性(没有背景噪声)进行压缩。最后,对于每个任务,在网络上添加不同的全连接层,不仅可以利用来自其他任务的有用信息,还可以提高网络的泛化性能。采用了多任务网络,因为共享的卷积层提取了所有任务(即,行为属性、区域属性和全局属性),然后,还有一些独立的分支,这些分支允许网络将重点放在每个任务的最重要的特性上。
上图中,RCB是残卷积块的缩写,具体框架如下:
在这里插入图片描述
提出的损失函数:
在这里插入图片描述
在这里插入图片描述

T、Ct、Kc、Nk分别为任务数、每个任务的类别(标签)数、每个类别的类数、每个类的样本数

实验:
在PETA 和RAP 数据集上进行实验。
在这里插入图片描述
在这里插入图片描述
下表是为了验证框架的有效性做的消融实验:
在这里插入图片描述
下图显示了系统对于部分遮挡的行为的处理结果。由此可见,该网络能够有效滤除干扰物的有害特征,同时聚焦于目标对象。
在这里插入图片描述
下图显示了每个任务中属性识别期间的模型行为。
在这里插入图片描述
下表展示了损失函数的影响:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值