nyoj 115 城市平乱(spfa)

将军统领着N个部队,这N个部队分别驻扎在N个不同的城市。

他在用这N个部队维护着M个城市的治安,这M个城市分别编号从1到M。

现在,小工军师告诉南将军,第K号城市发生了暴乱,南将军从各个部队都派遣了一个分队沿最近路去往暴乱城市平乱。

现在已知在任意两个城市之间的路行军所需的时间,你作为南将军麾下最厉害的程序员,请你编写一个程序来告诉南将军第一个分队到达叛乱城市所需的时间。

注意,两个城市之间可能不只一条路。

输入
第一行输入一个整数T,表示测试数据的组数。(T<20)
每组测试数据的第一行是四个整数N,M,P,Q(1<=N<=100,N<=M<=1000,M-1<=P<=100000)其中N表示部队数,M表示城市数,P表示城市之间的路的条数,Q表示发生暴乱的城市编号。
随后的一行是N个整数,表示部队所在城市的编号。
再之后的P行,每行有三个正整数,a,b,t(1<=a,b<=M,1<=t<=100),表示a,b之间的路如果行军需要用时为t

数据保证暴乱的城市是可达的。
输出
对于每组测试数据,输出第一支部队到达叛乱城市时的时间。每组输出占一行
样例输入
1
3 8 9 8
1 2 3
1 2 1
2 3 2
1 4 2
2 5 3
3 6 2
4 7 1
5 7 3
5 8 2
6 8 2 
样例输出

4

思路:从暴乱点用spfa跑一遍,比较每个军队的距离,找个最小的

 #include<iostream>
#include<cstdio>
#include<functional>
#include<queue>
#include<cstring>
using namespace std;
#define INF 999999999
int Map[1005][1005];
int dis[1005],book[1005];//book标记的是这个点在不在队列里
int n,m;
int init(){
    int i,j;
    for(i=1;i<=m;i++){
        for(j=1;j<=m;j++)
            Map[i][j]=INF;
        dis[i]=INF;
    }
}
void spfa(int st){
    queue<int>q;
    while(!q.empty()) q.pop();
    int i,j;
    i=st;
    dis[i]=0;
    book[i]=1;
   q.push(i);

   while(!q.empty()){
    i=q.front();
    q.pop();
    book[i]=0;//已经出队列的点不标记
   // printf("i=%d dis=%d\n",i,dis[i]);
      for(j=1; j<=m; j++) {
            if(Map[i][j]!=INF ) {
                if(dis[j]>Map[i][j]+dis[i]) {//更新值
                    dis[j]=Map[i][j]+dis[i];
                    if(book[j]==0){
                        q.push(j);
                        book[j]=1;
                    }

                  //  printf("dis[%d]=%d\n",j,dis[j]);
                }
            }
        }
   }
}
int main(){
    int t,p,q;
    int ar[105];
    int i,j;
    int a,b,c;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d%d%d",&n,&m,&p,&q);
        init();//初始化
       // printf("n=%d m=%d p=%d q=%d\n",n,m,p,q);
        for(i=0;i<n;i++)
            scanf("%d",&ar[i]);
       /*
        for(i=0;i<n;i++)
            printf("%d ",ar[i]);。。军队所在的城市编号
        printf("\n");
*/
        while(p--){
            scanf("%d%d%d",&a,&b,&c);
            if(c<Map[a][b]){
                Map[a][b]=c;
                Map[b][a]=c;
            }
        }
        /*
        for(i=1;i<=m;i++){
            for(j=1;j<=m;j++){
                printf("%d ",Map[i][j]);
            }
            printf("\n");
        }
*/
        memset(book,0,sizeof(book));
        spfa(q);
        int ans=INF;
        /*
        for(i=1;i<=m;i++)
            printf("%d ",dis[i]);
        printf("\n");
        */
        for(i=0;i<n;i++){
            if(dis[ar[i]]<ans)
              ans=dis[ar[i]];
        }
        printf("%d\n",ans);
    }
    return 0;
}


《RSMA与速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值