Kohya 训练器 Stable Diffusion工作流中训练LoRA模型方法

本文档是关于Stable Diffusion工作流中训练LoRA模型方法的文档

一.前置训练集准备

       第一步:

准备训练集:准备训练模型时使用的训练集。注意:训练集应当能尽量涵盖训练对象的“多样化样本”。如角色立绘图,各个角度不同的图片。

       第二步:

              图片预处理:裁剪+打标。裁剪:就是让AI能更好地通过图片辨析训练对象

尺寸需要符合原模型。打标:使用WD 1.4标签器。

裁剪:

       对于图像过于瘦长但又重要的图像可以使用图片处理软件进行横向拉长。

注意:训练器不能同时训练大小不同的图像。

注意:Kohya训练器可以勾选【启用数据容器】选项解决大小不一的问题。此选项把各个图片按照尺寸分别装进对应的桶里,再进行缩放,分别学习。

       尺寸须知:

              SD 1.4/1.5 :512*512

              SD 2.0/2.1 :768*768

              SD (0.9/1.0) : 1024*1024

打标:

       越希望A学习的东西越不能出现在标注里。如果标记过于全面,则不得不在每次生成时,都将”白头发,红眼睛”加进去。

       定理:标注里所描绘的标注在生成图片时,如果没有再一次使用对应关键词,则均会在生成时被“AI”剔除。

       但如果一点标签也不给,AI的学习效果会变差。

       打标分为:1.一句话描述

                            2.不希望出现的元素。

                            3.不包含细节的关键词(描述整体的词,角度,颜色等)

       2.对标签进行“清洗”与“纠正”:

              1.使用Dataset Tag Editor进行标签纠正。

              整体审核:

                     批量编辑-删除,选择一个或多个标签,选择移除,即可。

             

删除标签类型:

                     1. 明确不符合角色特质的错词。

2. 与训练对象本体识别特征密切相关的词。如最主要的特征:比如:头部特征,发型,发色等。

       总结:希望始终生成统一特征,就删除对应特征的关键词。如希望统一服装,就删除对应服装的关键词。

                     3.换,替换与之不对应的词。Danbooru 标签超市

4.共通:一些共通有明确特质、元素的图片,可以为他批量增加一些标签。比如如果使用LoRA后色调偏暗,有可能就是因为训练集图片有大部分的背景为夜景,或暗调。也就是说,训练集的调性会影响使用LoRA出图时的调性。

       通过选择过滤,选择足够的应该修改的场景图片-使用搜索与替换。进行对标签的修改。

       在搜索与替换中,取消 只展示在 Positive 过滤器中的被选中标签,原标签就是他们共同的标签。

                            单张审核:

1.很多的东西Tagger均无法识别出来。如:夜晚,调性,粒子,花,树,建筑等。

2.将图片的元素与你看见的元素进行对比,少补多删。

### GitHub上的Stable Diffusion LoRA训练教程 #### 使用LoRA进行微调的基础概念 在GitHub项目`haofanwang/Lora-for-Diffusers`中提供了易于理解的指导文档,帮助研究人员利用低秩适应(LoRA)技术,在不破坏预训练权重的情况下有效地调整大型模型。这种方法允许开发者仅需少量数据即可实现特定领域或风格的艺术作品生成能力提升[^1]。 #### 安装环境配置 为了能够在本地环境中顺利运行基于PyTorch框架构建的Stable Diffusion与Diffusers库相结合的工作流,建议按照官方指南完成必要的依赖项安装,并通过命令行参数`--enable-insecure-extension-access`来启用某些可能未经过安全验证但对实验至关重要的扩展功能[^2]。 #### 数据准备阶段 当一切就绪之后,下一步就是收集并整理用于训练的数据集。这通常涉及到图像标注工作以及确保所使用的图片质量满足要求。对于想要应用LoRA机制的具体案例而言,还需要特别注意输入特征的设计方式及其维度大小的选择等问题[^4]。 #### 训练过程概述 实际操作过程中,可以参照仓库内给出的例子脚本启动训练任务。这些示例不仅展示了如何加载预训练模型作为起点,还介绍了怎样定义损失函数、优化器以及其他超参数设置等内容。值得注意的是,在此期间应当密切关注日志输出中的各项指标变化情况以便及时作出相应调整。 ```bash # 假设已经克隆了上述提到的GitHub仓库到当前目录下 cd Lora-for-Diffusers/examples/ python train_lora.py \ --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4" \ --dataset_name="your_dataset_directory_here" \ --output_dir="./results" ``` #### 调试技巧分享 如果遇到任何问题或者性能瓶颈,可以通过查阅相关资料获取更多关于调试的信息和支持。例如,《Debug Stable Diffusion WebUI》一文中提到了一些常见的错误提示及解决方案;而《Sampling Methods》则深入探讨了几种不同的采样策略及其应用场景[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值