kohya_ss环境部署
1. 环境部署
-
创建虚拟环境
conda create -n env_kohya_ss python==3.10.0
-
进入虚拟环境
conda activate env_kohya_ss
-
clone源码
git clone https://github.com/bmaltais/kohya_ss.git
-
进入项目根目录
cd kohya_ss
-
安装相关库
# 根据环境选择 pip install -r requirements_linux.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install -r requirements_windows_torch2.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
2.运行程序
./gui.sh --listen 127.0.0.1 --server_port 7860 --inbrowser --share
3.训练模型参数
- 根据自己的数据,在有底模的情况下,训练微调模型参数,更好的达到效果
3.1 创建输出文件夹
- 在根目录创建
output/train
文件夹 - 进入
output/train
文件夹 - 创建输出相关文件夹
models,logs
3.2 数据集格式
- 数据集格式:一张图片对应一个文本且名称相同
- 数据集存放路径
dataset/100_dataset
kohya_ss/dataset kohya_ss/dataset/100_dataset # 100_dataset数据集文件夹,100_表示训练的批次
3.3 lora模型微调
3.3.1 数据及相关路径
- input image folder:
训练数据集路径为父级路径
kohya_ss/dataset
- output file path
# output_models: 输出训练底模路径 kohya_ss/output/train/models # output_logs:输出训练日志路径 kohya_ss/output/train/logs # prompt :good,得到的底模名称
3.3.2 修改超参数
- 根据自己的需求修改
- Presets,LoRA type 需选择与lora相关的
- Presets,LoRA type 需选择与lora相关的
3.3.3 选择微调的底模
- 根据那个底模进行数据集微调:
-底模下载链接: https://civitai.com/modelskohya_ss/models/2dn_2.safetensors
3.4 sdxl模型微调
3.4.1 数据及相关路径
- input image folder:
训练数据集路径为父级路径
kohya_ss/dataset
- output file path
# output_models: 输出训练底模路径 kohya_ss/output/train/models # output_logs:输出训练日志路径 kohya_ss/output/train/logs # prompt :good,得到的底模名称
3.4.2 修改超参数
- 根据自己的需求修改
- Presets,LoRA type 需选择与sdxl相关的
- Presets,LoRA type 需选择与sdxl相关的
3.4.3 选择微调的底模
- 需要选择
SDXL Model
4. 报错信息
4.1 报错1
ImportError: cannot import name 'StableDiffusionXLPipeline' from 'diffusers'
- 解决
diffusers0.16.1版本改为0.18.2
pip uninstall diffusers pip uninstall diffusers==0.18.2
- 解决
4.2 报错2
StableDiffusionXLPipeline requires the invisible-watermark library but it was not found in your environment. You can install it with pip: pip install invisible-watermark>=2.0
- 解决
pip install invisible-watermark>=2.0