[AT2389] [AGC016 E] Poor Turkeys

26 篇文章 0 订阅
19 篇文章 0 订阅
洛谷传送门
Atcoder传送门

题目大意

N ( 2 ≤ N ≤ 400 ) N(2\le N\le 400) N(2N400)只火鸡, 编号为 1 1 1 N N N , 有 M ( 1 ≤ M ≤ 1 0 5 ) M(1\le M\le 10^5) M(1M105) 个人, 每人指定了两只火鸡 x x x y y y .

到第 i i i个人选择的时候:

  1. x x x y y y 都活着, 那么这个人将会等概率地随机吃掉一只
  2. x x x y y y 恰好活着一只, 那么这个人将会吃掉活着的这只
  3. x x x y y y 都已经死亡, 那么只好什么都不做

求有多少个 ( i , j ) ( 1 ≤ i &lt; j ≤ N ) (i,j)(1\le i&lt;j\le N) (i,j)(1i<jN)满足在最终时刻第 i i i 只火鸡和第 j j j 只火鸡都还活着

输入输出格式

输入格式

第一行两个正整数 N , M N,M N,M

以下 M M M行, 第 i i i行两个正整数 x i , y i x_i,y_i xi,yi, 表示第 i i i个人指定的两只火鸡的编号。

输出格式

输出一个非负整数, 表示满足要求的火鸡对数。

输入输出样例

输入样例#1:
3 1
1 2
输出样例#1:
2
输入样例#2:
4 3
1 2
3 4
2 3
输出样例#2:
1
输入样例#3:
10 10
8 9
2 8
4 6
4 9
7 8
2 8
1 8
3 4
3 4
2 7
输出样例#3:
5

解题分析

倒着分析, 我们维护一个保留集合, 一开始这个集合中有我们强制留下的一只鸡, 从后向前遍历预定的序列, 那么每当保留集合里的鸡出现时, 另一只鸡也必须加入保留集合。 如果原来另一只鸡已经在集合中了, 显然最后无法留下这只钦定的鸡。

然后枚举两只最后可以留下的鸡, 判断它们的保留集合是否有交集, 若有交集则交集的鸡只能给一个集合, 显然非法。否则对答案有 1 1 1的贡献。

判交集可以做到 O ( n 32 ) O(\frac{n}{32}) O(32n), 总复杂度 O ( n m + n 3 32 ) O(nm+\frac{n^3}{32}) O(nm+32n3)

代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#include <bitset>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define ll long long
#define MX 405
#define SIZ 100500
template <class T>
IN void in(T &x)
{
	x = 0; R char c = gc;
	for (; !isdigit(c); c = gc);
	for (;  isdigit(c); c = gc)
	x = (x << 1) + (x << 3) + c - 48;
}
int n, m, ans;
int a[SIZ], b[SIZ];
std::bitset <MX> st[MX];
bool out[MX];
int main(void)
{
	in(n), in(m);
	for (R int i = 1; i <= m; ++i)
	in(a[i]), in(b[i]);
	for (R int i = 1; i <= n; ++i)
	{
		st[i][i] = true;
		for (R int j = m; j; --j)
		{
			if (st[i][a[j]] && st[i][b[j]])
			{out[i] = true; goto gg;}
			if ((!st[i][a[j]]) && (!st[i][b[j]])) continue;
			st[i][a[j]] = st[i][b[j]] = true;
		}
		gg: ;
	}
	for (R int i = 1; i < n; ++i)
	for (R int j = i + 1; j <= n; ++j)
	ans += (!out[i]) && (!out[j]) && (st[i] & st[j]).none();
	printf("%d", ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值