洛谷传送门
Atcoder传送门
题目大意
有 N ( 2 ≤ N ≤ 400 ) N(2\le N\le 400) N(2≤N≤400)只火鸡, 编号为 1 1 1 到 N N N , 有 M ( 1 ≤ M ≤ 1 0 5 ) M(1\le M\le 10^5) M(1≤M≤105) 个人, 每人指定了两只火鸡 x x x 和 y y y .
到第 i i i个人选择的时候:
- 若 x x x 和 y y y 都活着, 那么这个人将会等概率地随机吃掉一只
- 若 x x x 和 y y y 恰好活着一只, 那么这个人将会吃掉活着的这只
- 若 x x x 和 y y y 都已经死亡, 那么只好什么都不做
求有多少个 ( i , j ) ( 1 ≤ i < j ≤ N ) (i,j)(1\le i<j\le N) (i,j)(1≤i<j≤N)满足在最终时刻第 i i i 只火鸡和第 j j j 只火鸡都还活着
输入输出格式
输入格式
第一行两个正整数 N , M N,M N,M。
以下 M M M行, 第 i i i行两个正整数 x i , y i x_i,y_i xi,yi, 表示第 i i i个人指定的两只火鸡的编号。
输出格式
输出一个非负整数, 表示满足要求的火鸡对数。
输入输出样例
输入样例#1:
3 1
1 2
输出样例#1:
2
输入样例#2:
4 3
1 2
3 4
2 3
输出样例#2:
1
输入样例#3:
10 10
8 9
2 8
4 6
4 9
7 8
2 8
1 8
3 4
3 4
2 7
输出样例#3:
5
解题分析
倒着分析, 我们维护一个保留集合, 一开始这个集合中有我们强制留下的一只鸡, 从后向前遍历预定的序列, 那么每当保留集合里的鸡出现时, 另一只鸡也必须加入保留集合。 如果原来另一只鸡已经在集合中了, 显然最后无法留下这只钦定的鸡。
然后枚举两只最后可以留下的鸡, 判断它们的保留集合是否有交集, 若有交集则交集的鸡只能给一个集合, 显然非法。否则对答案有 1 1 1的贡献。
判交集可以做到 O ( n 32 ) O(\frac{n}{32}) O(32n), 总复杂度 O ( n m + n 3 32 ) O(nm+\frac{n^3}{32}) O(nm+32n3)。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#include <bitset>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define ll long long
#define MX 405
#define SIZ 100500
template <class T>
IN void in(T &x)
{
x = 0; R char c = gc;
for (; !isdigit(c); c = gc);
for (; isdigit(c); c = gc)
x = (x << 1) + (x << 3) + c - 48;
}
int n, m, ans;
int a[SIZ], b[SIZ];
std::bitset <MX> st[MX];
bool out[MX];
int main(void)
{
in(n), in(m);
for (R int i = 1; i <= m; ++i)
in(a[i]), in(b[i]);
for (R int i = 1; i <= n; ++i)
{
st[i][i] = true;
for (R int j = m; j; --j)
{
if (st[i][a[j]] && st[i][b[j]])
{out[i] = true; goto gg;}
if ((!st[i][a[j]]) && (!st[i][b[j]])) continue;
st[i][a[j]] = st[i][b[j]] = true;
}
gg: ;
}
for (R int i = 1; i < n; ++i)
for (R int j = i + 1; j <= n; ++j)
ans += (!out[i]) && (!out[j]) && (st[i] & st[j]).none();
printf("%d", ans);
}