[Codeforces Round #339 (Div. 1)] - C Necklace

洛谷传送门
Codeforces传送门

题目大意

你有一个 n ( n ≤ 26 ) n(n\le 26) n(n26)种颜色的珠子, 现在你想要将它们串成手链, 手链的美观度定义为从某个位置切开后, 形成的颜色序列为回文串的方案数。 你要求出最大的可能的美观度。

解题分析

显然我们要构造尽量多的小回文串来构成大的回文串。

如果有两个颜色的珠子数量都为奇数, 显然无解。

如果有一种颜色的珠子数量为奇数, 那么方案数就是每种颜色数量的gcd, 输出方案时把奇数的放在小回文串中间。

如果没有颜色的珠子数量为奇数, 方案数仍然为每种颜色数量的gcd, 小回文串构成形如 a b b a abba abba的形式就好了。

代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <queue>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 30
#define ll long long
template <class T>
IN void in(T &x)
{
	x = 0; R char c = gc;
	for (; !isdigit(c); c = gc);
	for (;  isdigit(c); c = gc)
	x = (x << 1) + (x << 3) + c - 48;
}
int n, gcd, odd, las, len, cnt, mx;
int dat[MX];
std::deque <char> dq;
char ans[100500];
int main(void)
{
	in(n);
	for (R int i = 1; i <= n; ++i)
	{
		in(dat[i]);
		odd += dat[i] & 1;
		if (dat[i] & 1) las = i;
		mx = std::max(mx, dat[i]);
	}
	gcd = dat[1];
	for (R int i = 2; i <= n; ++i) gcd = std::__gcd(gcd, dat[i]);
	if (odd > 1)
	{
		puts("0");
		for (R int i = 1; i <= n; ++i)
		for (R int j = 1; j <= dat[i]; ++j)
		putchar('a' + i - 1);
		return 0;
	}
	if (odd == 1)
	{
		cnt = dat[las] / gcd;
		printf("%d\n", gcd);
		for (R int i = 1; i <= cnt; ++i)
		dq.push_back('a' + las - 1);
		for (R int i = 1; i <= n; ++i) if (las ^ i)
		{
			int half = dat[i] / gcd / 2; cnt = dat[i] / gcd - half;
			for (R int j = 1; j <= half; ++j) dq.push_back('a' + i - 1);
			for (R int j = 1; j <= cnt; ++j) dq.push_front('a' + i - 1);
		}
		for (auto i : dq) ans[++len] = i;
		for (R int i = 1; i <= gcd; ++i) printf("%s", ans + 1);
	}
	else
	{
		printf("%d\n", gcd);
		for (R int i = 1; i <= n; ++i)
		{
			int half = dat[i] / gcd;
			for (R int j = 1; j <= half; ++j) dq.push_back('a' + i - 1);
			for (R int j = 1; j <= half; ++j) dq.push_front('a' + i - 1);
		}
		int half = gcd / 2;
		for (auto i : dq) ans[++len] = i;
		for (R int i = 1; i <= half; ++i) printf("%s", ans + 1);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值