洛谷传送门
Codeforces传送门
题目大意
你有一个 n ( n ≤ 26 ) n(n\le 26) n(n≤26)种颜色的珠子, 现在你想要将它们串成手链, 手链的美观度定义为从某个位置切开后, 形成的颜色序列为回文串的方案数。 你要求出最大的可能的美观度。
解题分析
显然我们要构造尽量多的小回文串来构成大的回文串。
如果有两个颜色的珠子数量都为奇数, 显然无解。
如果有一种颜色的珠子数量为奇数, 那么方案数就是每种颜色数量的gcd, 输出方案时把奇数的放在小回文串中间。
如果没有颜色的珠子数量为奇数, 方案数仍然为每种颜色数量的gcd, 小回文串构成形如 a b b a abba abba的形式就好了。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <queue>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 30
#define ll long long
template <class T>
IN void in(T &x)
{
x = 0; R char c = gc;
for (; !isdigit(c); c = gc);
for (; isdigit(c); c = gc)
x = (x << 1) + (x << 3) + c - 48;
}
int n, gcd, odd, las, len, cnt, mx;
int dat[MX];
std::deque <char> dq;
char ans[100500];
int main(void)
{
in(n);
for (R int i = 1; i <= n; ++i)
{
in(dat[i]);
odd += dat[i] & 1;
if (dat[i] & 1) las = i;
mx = std::max(mx, dat[i]);
}
gcd = dat[1];
for (R int i = 2; i <= n; ++i) gcd = std::__gcd(gcd, dat[i]);
if (odd > 1)
{
puts("0");
for (R int i = 1; i <= n; ++i)
for (R int j = 1; j <= dat[i]; ++j)
putchar('a' + i - 1);
return 0;
}
if (odd == 1)
{
cnt = dat[las] / gcd;
printf("%d\n", gcd);
for (R int i = 1; i <= cnt; ++i)
dq.push_back('a' + las - 1);
for (R int i = 1; i <= n; ++i) if (las ^ i)
{
int half = dat[i] / gcd / 2; cnt = dat[i] / gcd - half;
for (R int j = 1; j <= half; ++j) dq.push_back('a' + i - 1);
for (R int j = 1; j <= cnt; ++j) dq.push_front('a' + i - 1);
}
for (auto i : dq) ans[++len] = i;
for (R int i = 1; i <= gcd; ++i) printf("%s", ans + 1);
}
else
{
printf("%d\n", gcd);
for (R int i = 1; i <= n; ++i)
{
int half = dat[i] / gcd;
for (R int j = 1; j <= half; ++j) dq.push_back('a' + i - 1);
for (R int j = 1; j <= half; ++j) dq.push_front('a' + i - 1);
}
int half = gcd / 2;
for (auto i : dq) ans[++len] = i;
for (R int i = 1; i <= half; ++i) printf("%s", ans + 1);
}
}