【卡尔曼滤波器-Python】The g-h filter white white noise(白噪声)

用G-H滤波器减少白噪声

白噪声的模拟

这里采用numpy.random.randn()函数随机生成期望为0的有限变量,生成的过程即在原始数据上加上随机生成的噪声,定义如下的函数

from numpy.random import randn
def gen_data(x0,dx,count,noise_factor):
    return [x0+dx*i+randn()*noise_factor for i in range(count)]

mensurements=gen_data(5,2,100,10)

这里写图片描述

不同初值对滤波结果影响

采用上一篇博文中的G-H filter1进行滤波处理,并设定不同的初值得到的滤波效果

data=g_h_filter(data=mensurements, x0=5., dx=2., dt=1., g=0.2, h=0.01);

这里写图片描述

data=g_h_filter(data=mensurements, x0=100, dx=2., dt=1., g=0.2, h=0.01);

这里写图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值