用G-H滤波器减少白噪声
白噪声的模拟
这里采用numpy.random.randn()函数随机生成期望为0的有限变量,生成的过程即在原始数据上加上随机生成的噪声,定义如下的函数
from numpy.random import randn
def gen_data(x0,dx,count,noise_factor):
return [x0+dx*i+randn()*noise_factor for i in range(count)]
mensurements=gen_data(5,2,100,10)
不同初值对滤波结果影响
采用上一篇博文中的G-H filter1进行滤波处理,并设定不同的初值得到的滤波效果
data=g_h_filter(data=mensurements, x0=5., dx=2., dt=1., g=0.2, h=0.01);
data=g_h_filter(data=mensurements, x0=100, dx=2., dt=1., g=0.2, h=0.01);