spark数据倾斜,spark sql 优化方案

  • 1、SQL 代码层面优化
    Step1、阻塞调度的长耗时 SQL 提取
    Step2、划分长耗时 SQL
    Step3、对长耗时 SQL 逐个分析

  • 1.1、数据倾斜优化

  • 1.1.1、sqoop 导入数据时的倾斜:
    经过分析发现,数据倾斜是因为sqoop 同步数据时,采用的是sys_time字段进行数据进行split的,客户可能在某一时间对业务数据库进行过导入,从而导致很多数据的sys_time 在同一时间。所以sqoop 导入的数据,即存在了数据倾斜

解决办法:
将sqoop split_by 的字段由sys_time,修改为id,或者其他不倾斜的字段,从而保证数据源在同步时,不会出现数据倾斜。从而保证spark 程序在scan数据时,不会出现数据倾斜。
假如还存在倾斜的话,可以考虑适当的增加 num-mappers 的数量,将数据尽可能的分散开。
如果通过修改 num-mappers 数量和修改 split_by 字段都没办法解决,可以通过自定义 sqoop 的 query sql ,生成一个严格均匀分布的字段,然后指定为分割字段,从而解决数据倾斜。

  • 1.1.2、spark 运行时产生的数据倾斜:

  • 2.1、增加spark job 的并行度。

  • 2.2、大表 join 小表 时产生的数据倾斜:可以通过开启 broadcast join 通过driver 将小表进行广播出去,避免shuffle得产生,从而避免大表产生的倾斜。
    其实很多场景,通过以上两种方案都可以适当的缓解或者避免掉数据倾斜,接下来,我们简单的聊一聊通过2.1和2.2 避免不了的问题。

  • 1.1.3、过滤少数导致倾斜的key
    方案适用场景:
    如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。
    方案实现思路:
    如果判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。
    方案实现原理:
    将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

  • 1.1.4、双重聚合
    方案适用场景:
    对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

方案实现思路:
这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。
在这里插入图片描述

方案实现原理:
将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。

  • 1.1.5、采样倾斜key并分拆join操作
    方案适用场景:
    两个RDD/Hive表进行join的时候,如果数据量都比较大,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。
    方案实现思路:
    对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。而另外两个普通的RDD就照常join即可。最后将两次join的结果使用union算子合并起来即可,就是最终的join结果 。
    在这里插入图片描述

  • 1.1.6、使用随机前缀和扩容RDD进行join
    方案适用场景:
    如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。
    方案实现思路:
    该方案的实现思路基本和1.1.5类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。然后将该RDD的每条数据都打上一个n以内的随机前缀。同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。最后将两个处理后的RDD进行join即可。
    在这里插入图片描述

  • 1.2、复杂 sql 逻辑优化

复杂 sql 部分嵌套逻辑
<image.png>

从org.apache.spark.sql.execution.SparkStrategyz注释可以看到,BroadcastNestedLoopJoin是最终解决方案,当 sql 复杂度太高,spark无法优化,就会选择低效的
BroadcastNestedLoopJoin
这时候可以将sql子查询逻辑拆分为外层的join,进行优化,从而让spark 能选择高效的join方式
<image.png>

  • 2、资源分配优化
    我们对每一层的job都做了粗略的内存划分
    <image.png>

但是难免每层的job都会存在部分表数据量比较大,内存不够,从而导致落盘,于是我们针对一些数据量比较大的sql,再进行单独资源分配,确保每一层的job不会出现特别长时间的job
<image.png>

  • 3、调度层面优化
    说到数仓的执行顺序,我们一般想到的都是ods->dwd->dws->dm->application(此项目的application一是写到PG了)
    我们的application 层的sql 有部分是从dm 读取汇总数据写入PG的,也有部分 sql 是读取 dws 明细数据 写入 PG 的。
    当然,每天的明细数据也很多,最终导致我们 application 层跑的异常慢。发现这个问题后,我们将 application 一分为二,让依赖 dws 的 application sql 在dws执行完后执行,让依赖于dm 的application sql 依然按照原计划,执行计划如下图
    <image.png>
  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
⼤数据常见问题之数据倾斜 什么是数据倾斜 简单的讲,数据倾斜就是我们在计算数据的时候,数据的分散度不够,导致⼤量的数据集中到了⼀台或者⼏台机器上计算,这些数据的计 算速度远远低于平均计算速度,导致整个计算过程过慢。 相信⼤部分做数据的童鞋们都会遇到数据倾斜数据倾斜会发⽣在数据开发的各个环节中,⽐如: ⽤Hive算数据的时候reduce阶段卡在99.99% ⽤SparkStreaming做实时算法时候,⼀直会有executor出现OOM的错误,但是其余的executor内存使⽤率却很低。 数据倾斜有⼀个关键因素是数据量⼤,可以达到千亿级。 数据倾斜长的表现 以Hadoop和Spark是最常见的两个计算平台,下⾯就以这两个平台说明: 1、Hadoop中的数据倾斜 Hadoop中直接贴近⽤户使⽤使⽤的时Mapreduce程序和Hive程序,虽说Hive最后也是⽤MR来执⾏(⾄少⽬前Hive内存计算并不普 及),但是毕竟写的内容逻辑区别很⼤,⼀个是程序,⼀个是Sql,因此这⾥稍作区分。 Hadoop中的数据倾斜主要表现在ruduce阶段卡在99.99%,⼀直99.99%不能结束。 这⾥如果详细的看⽇志或者和监控界⾯的话会发现: 有⼀个多⼏个reduce卡住 各种container报错OOM 读写的数据量极⼤,⾄少远远超过其它正常的reduce 伴随着数据倾斜,会出现任务被kill等各种诡异的表现。 经验: Hive数据倾斜,⼀般都发⽣在Sql中Group和On上,⽽且和数据逻辑绑定⽐较深。 2、Spark中的数据倾斜 Spark中的数据倾斜也很常见,这⾥包括Spark Streaming和Spark Sql,表现主要有下⾯⼏种: Executor lost,OOM,Shuffle过程出错 Driver OOM 单个Executor执⾏时间特别久,整体任务卡在某个阶段不能结束 正常运⾏的任务突然失败 补充⼀下,在Spark streaming程序中,数据倾斜更容易出现,特别是在程序中包含⼀些类似sql的join、group这种操作的时候。 因为 Spark Streaming程序在运⾏的时候,我们⼀般不会分配特别多的内存,因此⼀旦在这个过程中出现⼀些数据倾斜,就⼗分容易造成 OOM。 数据倾斜的原理 1、数据倾斜产⽣的原因 我们以SparkHive的使⽤场景为例。他们在做数据运算的时候会设计到,countdistinct、group by、join等操作,这些都会触发 Shuffle动作,⼀旦触发,所有相同key的值就会拉到⼀个或⼏个节点上,就容易发⽣单点问题。 2、万恶的shuffle Shuffle是⼀个能产⽣奇迹的地⽅,不管是在Spark还是Hadoop中,它们的作⽤都是⾄关重要的。那么在Shuffle如何产⽣了数据倾 斜? Hadoop和Spark在Shuffle过程中产⽣数据倾斜的原理基本类似。如下图。 ⼤部分数据倾斜的原理就类似于下图,很明了,因为数据分布不均匀,导致⼤量的数据分配到了⼀个节点。 3、从业务计⾓度来理解数据倾斜 数据往往和业务是强相关的,业务的场景直接影响到了数据的分布。再举⼀个例⼦,⽐如就说订单场景吧,我们在某⼀天在北京和上 海两个城市多了强⼒的推⼴,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。然后我们要统计不同城市的订单 情况,这样,⼀做group操作,可能直接就数据倾斜了。 如何解决 数据倾斜的产⽣是有⼀些讨论的,解决它们也是有⼀些讨论的,本章会先给出⼏个解决数据倾斜的思路,然后对Hadoop和Spark分别 给出⼀些解决数据倾斜的⽅案。 ⼀、⼏个思路 解决数据倾斜有这⼏个思路: 1.业务逻辑,我们从业务逻辑的层⾯上来优化数据倾斜,⽐如上⾯的例⼦,我们单独对这两个城市来做count,最后和其它城市做整 合。 2.程序层⾯,⽐如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有⼀个reduce,我们可以先group 再在外⾯包 ⼀层count,就可以了。 3.调参⽅⾯,Hadoop和Spark都⾃带了很多的参数和机制来调节数据倾斜,合理利⽤它们就能解决⼤部分问题。 ⼆、从业务和数据上解决数据倾斜 很多数据倾斜都是在数据的使⽤上造成的。我们举⼏个场景,并分别给出它们的解决⽅案。 数据分布不均匀: 前⾯提到的"从数据⾓度来理解数据倾斜"和"从业务计⾓度来理解数据倾斜"中的例⼦,其实都是数据分布不均匀的类型,这种情况和计 算平台⽆关,我们能通过设计的⾓度尝试解决它。 有损的⽅法: 找到异常数据,⽐如ip为0的数据,过滤掉 ⽆损的⽅法: 对分布不均匀的数据,单独计算 先对key做⼀层hash,先将数据打散让它的并⾏度变⼤,再汇集 ·数据预处理 三、Had
上百节课详细讲解,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 课程介绍: 讲解一个真实的、复杂的大型企业级大数据项目,是Spark的大型项目实战课程。 通过本套课程的学习,可以积累大量Spark项目经验,迈入Spark高级开发行列。 课程特色: 1、项目中全面覆盖了Spark Core、Spark SQLSpark Streaming这三个技术框架几乎全部的初级和高级的技术点和知识点, 让学员学以致用,通过一套课程,即掌握如何将Spark所有的技术点和知识点应用在真实的项目中,来实现业务需求! 2、项目中的4个功能横块,全郃是实际企业项目中提取出来的,并进行技术整合和改良过的功能模块.全都是企业级的复杂和真实的需求,业务模块非常之复杂,绝对不是市面上的Dem级别的大数据项目能够想比拟的,学习过后,真正帮助学员增加实际 企业级项目的实战经验。 3、项目中通过实际的功能模块和业务场景,以及讲师曾经开发过的处理十亿、甚至百亿以上数据级别的SparK作业的经验积累,贯穿讲解了大量的高级复杂的性能调优技术和知识、troubleshooting解决线上报错和故障的经验、高端的全方位数据倾斜处理和解决方案.真正帮助学员掌握高精尖的Spark技术! 4、项目中采用完全还原企业大数据项目开发场景的方式来讲解,每一个业务模块的讲解都包括了需求分析、方案设计、数据设计、编码实现、功能测试、性能调优等环节,真实还原企业级大数据项目开发场景。 模块简介: 1、用户访问session分析,该模块主要是对用户访问session进行统计分析.包括session的聚合指标计算、 按时间比例随机抽取session、获取每天点击、下单和购买排名前10的品类、并获取top10品类的点击量排名前10的session.该模块可以让产品经理、数据分析师以及企业管理层形象地看到各种条件下的具体用户行为以及统计指标.从而对公司的产品设计以及业务发展战略做出调整.主要使用Spark Core实现. 2、页面单跳转化率统计,该模块主要是计算关键页面之间的单步跳转转化率,涉及到页面切片算法以及页面流匹配算法.该模块可以让产品经理、数据分析师以及企业管理层看到各个关键页面之间的转化率.从而对网页布局,进行更好的优化设计。主要使用Spark Core实现. 3、热门商品离线统计,该模块主要实现每天统计出各个区域的top3热门商品.然后使用Oozie进行离线统计任务的定时调度,使用Zeppeline进行数据可视化的报表展示.该模块可以让企业管理层看到公司售卖的 商品的整体情况,从而对公司的商品相关的战略进行调螫.主要使用Spark SQL实现。 4、广告流量实时统计.该模块负责实时统计公司的广告流量.包括广告展现流量和广告点击流量,实现动态黑名单机制以及黑名单过滤,实现滑动窗口内的各城市的广告展现流立和广告点击流直的统计,实现 每个区域诲个广告的点击流置实时统计,实现每个区域top3点击量的广告的统计,主要使用Spark Streaming实现.
大数据常见问题之数据倾斜全文共5页,当前为第1页。大数据常见问题之数据倾斜全文共5页,当前为第1页。大数据常见问题之数据倾斜 大数据常见问题之数据倾斜全文共5页,当前为第1页。 大数据常见问题之数据倾斜全文共5页,当前为第1页。 什么是数据倾斜 简单的讲,数据倾斜就是我们在计算数据的时候,数据的分散度不够,导致大量的数据集中到了一台或者几台机器上计算,这些数据的计算速度远远低于平均计算速度,导致整个计算过程过慢。 相信大部分做数据的童鞋们都会遇到数据倾斜数据倾斜会发生在数据开发的各个环节中,比如: 用Hive算数据的时候reduce阶段卡在99.99% 用SparkStreaming做实时算法时候,一直会有executor出现OOM的错误,但是其余的executor内存使用率却很低。 数据倾斜有一个关键因素是数据量大,可以达到千亿级。 数据倾斜长的表现 以Hadoop和Spark是最常见的两个计算平台,下面就以这两个平台说明: 1、Hadoop中的数据倾斜 Hadoop中直接贴近用户使用使用的时Mapreduce程序和Hive程序,虽说Hive最后也是用MR来执行(至少目前Hive内存计算并不普及),但是毕竟写的内容逻辑区别很大,一个是程序,一个是Sql,因此这里稍作区分。 Hadoop中的数据倾斜主要表现在ruduce阶段卡在99.99%,一直99.99%不能结束。 这里如果详细的看日志或者和监控界面的话会发现: 有一个多几个reduce卡住 各种container报错OOM 读写的数据量极大,至少远远超过其它正常的reduce 伴随着数据倾斜,会出现任务被kill等各种诡异的表现。 经验: Hive数据倾斜,一般都发生在Sql中Group和On上,而且和数据逻辑绑定比较深。 2、Spark中的数据倾斜 大数据常见问题之数据倾斜全文共5页,当前为第2页。大数据常见问题之数据倾斜全文共5页,当前为第2页。Spark中的数据倾斜也很常见,这里包括Spark Streaming和Spark Sql,表现主要有下面几种: 大数据常见问题之数据倾斜全文共5页,当前为第2页。 大数据常见问题之数据倾斜全文共5页,当前为第2页。 Executor lost,OOM,Shuffle过程出错 Driver OOM 单个Executor执行时间特别久,整体任务卡在某个阶段不能结束 正常运行的任务突然失败 补充一下,在Spark streaming程序中,数据倾斜更容易出现,特别是在程序中包含一些类似sql的join、group这种操作的时候。 因为Spark Streaming程序在运行的时候,我们一般不会分配特别多的内存,因此一旦在这个过程中出现一些数据倾斜,就十分容易造成OOM。 数据倾斜的原理 1、数据倾斜产生的原因 我们以SparkHive的使用场景为例。他们在做数据运算的时候会设计到,countdistinct、group by、join等操作,这些都会触发Shuffle动作,一旦触发,所有相同key的值就会拉到一个或几个节点上,就容易发生单点问题。 2、万恶的shuffle Shuffle是一个能产生奇迹的地方,不管是在Spark还是Hadoop中,它们的作用都是至关重要的。那么在Shuffle如何产生了数据倾斜? Hadoop和Spark在Shuffle过程中产生数据倾斜的原理基本类似。如下图。 大数据常见问题之数据倾斜全文共5页,当前为第3页。大数据常见问题之数据倾斜全文共5页,当前为第3页。 大数据常见问题之数据倾斜全文共5页,当前为第3页。 大数据常见问题之数据倾斜全文共5页,当前为第3页。 大部分数据倾斜的原理就类似于下图,很明了,因为数据分布不均匀,导致大量的数据分配到了一个节点。 3、从业务计角度来理解数据倾斜 数据往往和业务是强相关的,业务的场景直接影响到了数据的分布。再举一个例子,比如就说订单场景吧,我们在某一天在北京和上海两个城市多了强力的推广,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。然后我们要统计不同城市的订单情况,这样,一做group操作,可能直接就数据倾斜了。 如何解决 数据倾斜的产生是有一些讨论的,解决它们也是有一些讨论的,本章会先给出几个解决数据倾斜的思路,然后对Hadoop和Spark分别给出一些解决数据倾斜方案。 一、几个思路 解决数据倾斜有这几个思路: 1.业务逻辑,我们从业务逻辑的层面上来优化数据倾斜,比如上面的例子,我们单独对这两个城市来做count,最后和其它城市做整合。 大数据常见问题之数据倾斜全文共5页,当前为第4页。大数据常见问题之数据倾斜全文共5页,当前为第4页。2.程序层面,比如说在Hive中,经常遇到count(distinct)操作,这样会

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值