LLM → 系统级智能体(System-level Agent)的演进

2025博客之星年度评选已开启 10w+人浏览 1.6k人参与

1. 起点:LLM 作为通用认知引擎

核心突破

  • 通过大规模预训练获得:语言理解、生成、一定程度推理与泛化能力。
  • 对外表现:对话、写作、总结、编码、问答、推理。

关键缺陷(为什么还不是“智能体”)

  • 被动:只能被问才答。
  • 无行动:不能直接调用现实世界能力(App、API、系统功能)。
  • 无状态:缺少长期记忆与任务持续性。
  • 不可验证:输出不等于执行结果,且缺少闭环校验。

LLM 阶段的定位很清楚:“会思考与表达”,但不“负责把事做成”。


2. 第一次补齐:工具调用与检索(LLM 连接外部能力)

这一阶段的关键不在模型更聪明,而在“让模型接上外部世界”。

两类典型扩展

  1. RAG / 搜索
  • 解决“知识更新与可引用”问题,让答案能基于外部文档/数据库而不是纯参数记忆。
  • 重要变化:输出开始能“落地到证据”。
  1. Tool Calling / Function Calling
  • 让模型可以调用计算器、数据库查询、下单接口、发起工作流等。
  • 重要变化:模型从“写建议”走向“能触发动作”。

但此时仍缺少“目标—计划—执行—反馈”的连续循环,所以仍不是完整智能体。


3. 协议化与平台化:MCP 等“标准接口”出现

当工具越来越多,工程复杂度迅速上升:每个团队都在重复做“上下文拼装、权限、工具封装”。

MCP/类似协议做的事情

  • 把“模型如何获取上下文、如何发现工具、如何调用工具、返回结果怎么表达”变成标准化接口。
  • 让工具生态变得可插拔:像硬件的 USB-C、软件的驱动层。

结果

  • 工具接入成本下降
  • 能力组合速度提升
  • 为后续“系统级智能体”奠定工程基础

注意:协议解决的是规模化与互操作,不直接等于更智能。


4. 质变:Agent 出现(目标驱动 + 决策闭环)

智能体的本质不是“更会说”,而是“更会把任务做完”。

Agent 的核心结构(闭环)

  • 目标(Goal)
  • 计划(Plan)
  • 执行(Act via tools)
  • 观察(Observe results)
  • 纠错/反思(Reflect)
  • 迭代(Loop until done)

为什么这是质变

  • 从单轮输出变成多轮行动
  • 从“建议”变成“交付”
  • 从“文本正确”转向“结果正确”

随之而来的新问题

  • 可靠性:工具调用失败、结果不确定
  • 成本与时延:多轮规划与调用
  • 安全与权限:能操作系统就有风险
  • 评估困难:需要以任务完成率衡量,而非语言指标

5. 组织化:多 Agent(分工协作与管理)

单个 Agent 很快遇到“认知负载”与“复杂任务不可控”的上限,于是进入组织化阶段。

多 Agent 的价值

  • 分工:研究、规划、执行、审计、对抗评测等角色拆分
  • 并行:多路探索方案,再汇总决策
  • 互检:降低幻觉与错误决策概率
  • 可治理:通过“管理者/审计者”实现更强约束

此时 AI 系统开始像一个团队:有角色、有流程、有监督。


6. 从“应用内智能体”到“系统级智能体”的关键跃迁

真正走到 AI Phone / 系统级智能体,不是再加一个 Agent,而是把智能体“上移到操作系统层”,同时补齐几项底座能力。

6.1 入口迁移:从 App 内到 OS 层

  • 过去:你打开 App,App 里有 AI
  • 现在:你对系统说需求,系统决定调用哪些 App/服务

入口权的迁移意味着:App 从“用户界面中心”转为“能力提供方”。

6.2 权限与执行:从“调用 API”到“控制系统”

系统级智能体需要:

  • 跨 App 的执行权限(读写日程、通讯录、文件、通知、支付等)
  • 统一身份与授权(最小权限、可撤销、可审计)
  • 可靠执行机制(失败重试、事务、幂等、回滚)

6.3 记忆与个性化:从上下文到长期用户模型

系统级智能体要“像你的人”而不是“像一个客服”,因此需要:

  • 长期偏好记忆
  • 个人工作流习惯
  • 人际关系与优先级理解
  • 设备与场景感知(位置、时间、网络、会议状态等)

6.4 可靠性工程:从“能用”到“可依赖”

系统级意味着高风险与高频使用,必须具备:

  • 可观测性(日志、trace、解释链路)
  • 评估与回归(任务成功率、错误类型、对用户影响)
  • 安全护栏(敏感操作二次确认、反欺诈、越权拦截)
  • 多模型路由(快模型处理日常、强模型处理复杂)

6.5 生态:从“App Store”到“能力市场”

当 AI 成为入口,未来更像:

  • Tool / Capability Registry(能力注册表)
  • Agent Workflow Marketplace(工作流市场)
  • Reputation/Trust(调用可靠性与信誉评分)

7. 总结:一条清晰的能力补齐路线

你可以用一句话把全程串起来:

LLM 提供“认知”,工具与协议提供“连接”,Agent 提供“闭环”,多 Agent 提供“组织”,系统级智能体提供“入口 + 权限 + 记忆 + 治理”。

对应能力演进:

  1. 会说(LLM)
  2. 能查、能算、能调用(RAG/Tool)
  3. 能持续完成任务(Agent Loop)
  4. 能分工协作提升可靠性(Multi-Agent)
  5. 成为系统入口并可控地操纵真实世界(System-level Agent)
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谁在黄金彼岸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值