题4:对称二叉树
【题目描述】
一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树:
1.二叉树;
2.将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等。
下图中节点内的数字为权值,节点外的 i d id id表示节点编号。
现在给出一棵二叉树,希望你找出它的一棵子树,该子树为对称二叉树,且节点数最多。请输出这棵子树的节点数。
注意:只有树根的树也是对称二叉树。本题中约定,以节点 T T T为子树根的一棵“子树”指的是:节点 T T T 和它的全部后代节点构成的二叉树。
【输入文件】
第一行一个正整数 n n n,表示给定的树的节点的数目,规定节点编号 1 ∼ n 1∼n 1∼n,其中节点 1 1 1是树根。
第二行 n n n个正整数,用一个空格分隔,第 i i i个正整数 v i v_i vi代表节点i的权值。
接下来 n n n行,每行两个正整数 l i , r i l_i,r_i li,ri,分别表示节点i的左右孩子的编号。如果不存在左/右孩子,则以 − 1 −1 −1表示。两个数之间用一个空格隔开。
【输出文件】
输出共一行,包含一个整数,表示给定的树的最大对称二叉子树的节点数。
【输入样例1】
2
1 3
2 -1
-1 -1
【输出样例1】
1
【样例1说明】
最大的对称二叉子树为以节点
2
2
2 为树根的子树,节点数为
1
1
1。
【输入样例2】
10
2 2 5 5 5 5 4 4 2 3
9 10
-1 -1
-1 -1
-1 -1
-1 -1
-1 2
3 4
5 6
-1 -1
7 8
【输出样例2】
3
【样例2说明】
最大的对称二叉子树为以节点
7
7
7 为树根的子树,节点数为
3
3
3。
【数据规模】
共 25 25 25 个测试点。
v i ≤ 1000 v_i≤1000 vi≤1000。
测试点 1 − 3 , n ≤ 10 1−3,n≤10 1−3,n≤10,保证根结点的左子树所有节都没右孩子,根结点的右孩子,根结点的右子树的所有节点都没有左孩子。
测试点 4 − 8 , n ≤ 10 4−8,n≤10 4−8,n≤10。
测试点 9 − 12 , n ≤ 1 0 5 9−12,n≤10^5 9−12,n≤105,保证输入是一棵 “满二叉树 ”。
测试点 13 − 16 , n ≤ 1 0 5 13−16,n≤10^5 13−16,n≤105,保证输入是一棵 “完全二叉树 ”。
测试点 17 − 20 , n ≤ 1 0 5 17−20,n≤10^5 17−20,n≤105,保证输入的树点权均为 1 1 1。
测试点 21 − 25 , n ≤ 1 0 6 21−25,n≤10^6 21−25,n≤106。
本题约定:
层次:节点的层次从根开始定义起,根为第一层,根的孩子为第二层。树中任一节点的层次等于其父亲节点的层次加 1 1 1。
树的深度:树中节点的最大层次称为树的深度。
满二叉树:设二叉树的深度为 h h h,且二叉树有 2 h − 1 2h−1 2h−1个节点,这就是满二叉树。
满二叉树(深度为 3)
完全二叉树:设二叉树的深度为 h h h,除第 h h h层外,其它各层的结点数都达到最大个数,第 h h h层所有的结点都连续集中在最左边,这就是完全二叉树。
【代码如下】:
#include <bits/stdc++.h>
using namespace std;
struct node {
long long l, r, val;
} bt[1000002];
bool same(long long now1, long long now2) {
if (now1 == -1 && now2 == -1)
return true;
if (now2 == -1 || now1 == -1)
return false;
if (bt[now1].val != bt[now2].val)
return false;
return same(bt[now1].l, bt[now2].r) &&
same(bt[now1].r, bt[now2].l);
}
int count(long long now) {
return now == -1 ? 0 : count(bt[now].l) + count(bt[now].r) + 1;
}
int main() {
int n, ans = 0;
cin >> n;
for (int i = 1; i <= n; i++)
cin >> bt[i].val;
for (int i = 1; i <= n; i++)
cin >> bt[i].l >> bt[i].r;
for (int i = 1; i <= n; i++)
if (same(i, i)) ans = max(ans, count(i));
return 0 & printf("%d", ans);
}