【NOIP2018普及组复赛】题4:对称二叉树

题4:对称二叉树

【题目描述】

一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树:

1.二叉树;

2.将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等。

下图中节点内的数字为权值,节点外的 i d id id表示节点编号。

在这里插入图片描述
现在给出一棵二叉树,希望你找出它的一棵子树,该子树为对称二叉树,且节点数最多。请输出这棵子树的节点数。

注意:只有树根的树也是对称二叉树。本题中约定,以节点 T T T为子树根的一棵“子树”指的是:节点 T T T 和它的全部后代节点构成的二叉树。

【输入文件】

第一行一个正整数 n n n,表示给定的树的节点的数目,规定节点编号 1 ∼ n 1∼n 1n,其中节点 1 1 1是树根。

第二行 n n n个正整数,用一个空格分隔,第 i i i个正整数 v i v_i vi代表节点i的权值。

接下来 n n n行,每行两个正整数 l i , r i l_i,r_i li,ri,分别表示节点i的左右孩子的编号。如果不存在左/右孩子,则以 − 1 −1 1表示。两个数之间用一个空格隔开。

【输出文件】

输出共一行,包含一个整数,表示给定的树的最大对称二叉子树的节点数。

【输入样例1】

2
1 3
2 -1
-1 -1

【输出样例1】

1

【样例1说明】

在这里插入图片描述
最大的对称二叉子树为以节点 2 2 2 为树根的子树,节点数为 1 1 1

【输入样例2】

10
2 2 5 5 5 5 4 4 2 3
9 10
-1 -1
-1 -1
-1 -1
-1 -1
-1 2
3 4
5 6
-1 -1
7 8

【输出样例2】

3

【样例2说明】

在这里插入图片描述
最大的对称二叉子树为以节点 7 7 7 为树根的子树,节点数为 3 3 3

【数据规模】

25 25 25 个测试点。

v i ≤ 1000 v_i≤1000 vi1000

测试点 1 − 3 , n ≤ 10 1−3,n≤10 13n10,保证根结点的左子树所有节都没右孩子,根结点的右孩子,根结点的右子树的所有节点都没有左孩子。

测试点 4 − 8 , n ≤ 10 4−8,n≤10 48n10

测试点 9 − 12 , n ≤ 1 0 5 9−12,n≤10^5 912n105,保证输入是一棵 “满二叉树 ”。

测试点 13 − 16 , n ≤ 1 0 5 13−16,n≤10^5 1316n105,保证输入是一棵 “完全二叉树 ”。

测试点 17 − 20 , n ≤ 1 0 5 17−20,n≤10^5 1720n105,保证输入的树点权均为 1 1 1

测试点 21 − 25 , n ≤ 1 0 6 21−25,n≤10^6 2125n106

本题约定:

层次:节点的层次从根开始定义起,根为第一层,根的孩子为第二层。树中任一节点的层次等于其父亲节点的层次加 1 1 1

树的深度:树中节点的最大层次称为树的深度。

满二叉树:设二叉树的深度为 h h h,且二叉树有 2 h − 1 2h−1 2h1个节点,这就是满二叉树。

在这里插入图片描述
满二叉树(深度为 3)

完全二叉树:设二叉树的深度为 h h h,除第 h h h层外,其它各层的结点数都达到最大个数,第 h h h层所有的结点都连续集中在最左边,这就是完全二叉树。

在这里插入图片描述在这里插入图片描述

【代码如下】:

#include <bits/stdc++.h>
using namespace std;
struct node {
  long long l, r, val;
} bt[1000002];
bool same(long long now1, long long now2) {  
  if (now1 == -1 && now2 == -1)
  	return true;
  if (now2 == -1 || now1 == -1)
  	return false;  
  if (bt[now1].val != bt[now2].val)
  	return false;
  return same(bt[now1].l, bt[now2].r) &&
         same(bt[now1].r, bt[now2].l); 
}
int count(long long now) {  
  return now == -1 ? 0 : count(bt[now].l) + count(bt[now].r) + 1;
}
int main() {
  int n, ans = 0;
  cin >> n;
  for (int i = 1; i <= n; i++)
  	cin >> bt[i].val;
  for (int i = 1; i <= n; i++)
  	cin >> bt[i].l >> bt[i].r;
  for (int i = 1; i <= n; i++)
    if (same(i, i)) ans = max(ans, count(i));
  return 0 & printf("%d", ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lpstudio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值