题4:魔法阵
【题目描述】
六十年一次的魔法战争就要开始了,大魔法师准备从附近的魔法场中汲取魔法量。
大魔法师有 m m m 个魔法物品,编号分别为 1 , 2 , . . . m 1,2,...m 1,2,...m。每个物品具有一个魔法值,我们用 x i x_i xi 表示编号为 i i i 的物品的魔法值。每个魔法值 x i x_i xi 是不超过 n n n 的正整数,可能有多个物品的魔法值相同。
大魔法师认为,当且仅当四个编号为 a , b , c , d a,b,c,d a,b,c,d 的魔法物品满足 x a < x b < x c < x d , x b − x a = 2 ( x d − x c ) x_a<x_b<x_c<x_d,x_b−x_a=2(x_d−x_c) xa<xb<xc<xd,xb−xa=2(xd−xc),并且 x b − x a < ( x c − x b ) ÷ 3 x_b−x_a<(x_c−x_b)÷3 xb−xa<(xc−xb)÷3 时,这四个魔法物品形成了一个魔法阵,他称这四个魔法物品分别为这个魔法阵的 A A A 物品, B B B 物品, C C C 物品, D D D 物品。
现在,大魔法师想要知道,对于每个魔法物品,作为某个魔法阵的 A A A 物品出现的次数,作为 B B B 物品的次数,作为 C C C 物品的次数,和作为 D D D 物品的次数。
【输入】
输入的第一行包含两个空格隔开的正整数 n n n 和 m m m;
接下来 m m m 行,每行一个正整数,第 i + 1 i+1 i+1 行的正整数表示 x i x_i xi,即编号为 i i i 的物品的魔法值。
保证 1 ≤ n ≤ 15000 , 1 ≤ m ≤ 40000 , 1 ≤ x i ≤ n 1≤n≤15000,1≤m≤40000,1≤x_i≤n 1≤n≤15000,1≤m≤40000,1≤xi≤n。每个 x i x_i xi 是分别在合法范围内等概率随机生成的。
【输出】
共输出 m m m 行,每行四个整数。第 i i i 行的四个整数依次表示编号为 i i i 的物品作为 A , B , C , D A,B,C,D A,B,C,D 物品分别出现的次数。
保证标准输出中的每个数都不会超过 1 0 9 10^9 109
每行相邻的两个数之间用恰好一个空格隔开。
【输入样例1】
30 8
1
24
7
28
5
29
26
24
【输出样例1】
4 0 0 0
0 0 1 0
0 2 0 0
0 0 1 1
1 3 0 0
0 0 0 2
0 0 2 2
0 0 1 0
【样例1说明】
共有 5 5 5 个魔法阵,分别为:
物品 1 , 3 , 7 , 6 1,3,7,6 1,3,7,6,其魔法值分别为 1 , 7 , 26 , 29 1,7,26,29 1,7,26,29;
物品 1 , 5 , 2 , 7 1,5,2,7 1,5,2,7,其魔法值分别为 1 , 5 , 24 , 26 1,5,24,26 1,5,24,26;
物品 1 , 5 , 7 , 4 1,5,7,4 1,5,7,4,其魔法值分别为 1 , 5 , 26 , 28 1,5,26,28 1,5,26,28;
物品 1 , 5 , 8 , 7 1,5,8,7 1,5,8,7,其魔法值分别为 1 , 5 , 24 , 26 1,5,24,26 1,5,24,26;
物品 5 , 3 , 4 , 6 5,3,4,6 5,3,4,6,其魔法值分别为 5 , 7 , 28 , 290 5,7,28,290 5,7,28,290 以物品 5 5 5 为例,它作为 A A A 物品出现了 1 1 1 次,作为 B B B 物品出现了 3 3 3 次,没有作为 C C C 物品或者 D D D 物品出现,所以这一行输出的四个数依次为 1 , 3 , 0 , 00 1,3,0,00 1,3,0,00 此外,如果我们将输出看作一个 m m m 行 4 4 4 列的矩阵,那么每一列上的 m m m 个数之和都应等于魔法阵的总数。所以,如果你的输出不满足这个性质,那么这个输出一定不正确。你可以通过这个性质在一定程度上检查你的输出的正确性。
【样例输入2】
15 15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
【样例输出2】
5 0 0 0
4 0 0 0
3 5 0 0
2 4 0 0
1 3 0 0
0 2 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 2 1
0 0 3 2
0 0 4 3
0 0 5 4
0 0 0 5
【数据规模】
【代码如下】:
#include <bits/stdc++.h>
using namespace std;
//ifstream cin("magic.in");
//ofstream cout("magic.ans");
int n, m;
int v[40010], num[15010];
int a[15010], b[15010], c[15010], d[15010];
int main() {
cin >> n >> m;
for (int i = 1; i <= m; i ++) {
cin >> v[i];
num[v[i]]++;//桶排序
}
for (int t = 1; t * 9 < n; t++) { //枚举t
int sum = 0;
int va, vb, vc, vd;
for (vd = t * 9 + 2; vd <= n; vd++) { //枚举 d 物品的位置
va = vd - 9 * t - 1;//a 物品的魔法值
vb = vd - 7 * t - 1;//b 物品的魔法值
vc = vd - t;//c 物品的魔法值
sum += num[vb] * num[va]; //前缀和求能组成的魔法阵的个数
c[vc] += num[vd] * sum;
d[vd] += num[vc] * sum;
}
sum = 0;
for (va = n - t * 9 - 1; va >= 1; va--) { //枚举 a 物品的位置
vb = va + 2 * t;
vc = va + t * 8 + 1;
vd = va + t * 9 + 1;
sum += num[vc] * num[vd];
a[va] += num[vb] * sum;
b[vb] += num[va] * sum;
}
}
for (int i = 1; i <= m; i++) {
cout << a[v[i]] << " " << b[v[i]] << " " << c[v[i]] << " " << d[v[i]] << endl;
}
return 0;
}