题3:小熊的果篮
【题目描述】
小熊的水果店里摆放着一排 n n n 个水果。每个水果只可能是苹果或桔子,从左到右依 次用正整数 1 、 2 、 3 、 … … 、 n 1、2、3、……、n 1、2、3、……、n 编号。连续排在一起的同一种水果称为一个“块”。小熊要把这一排水果挑到若干个果篮里,具体方法是:每次都把每一个“块”中最左边的水果同时挑出,组成一个果篮。重复这一操作,直至水果用完。注意,每次挑完一个果篮 后,“块”可能会发生变化。比如两个苹果“块”之间的唯一桔子被挑走后,两个苹果 “块”就变成了一个“块”。请帮小熊计算每个果篮里包含的水果。
【输入格式】
输入的第一行包含一个正整数 n n n,表示水果的数量。
输入的第二行包含 n n n 个空格分隔的整数,其中第 i i i 个数表示编号为 i i i 的水果的种类, 1 1 1 代表苹果, 0 0 0 代表桔子。
【输出格式】
输出若干行。 第 i i i 行表示第 i i i 次挑出的水果组成的果篮。从小到大排序输出该果篮中所有水果的编号,每两个编号之间用一个空格分隔。
【输入样例1】
12 1 1 0 0 1 1 1 0 1 1 0 0【输出样例1】
1 3 5 8 9 11 2 4 6 12 7 10【样例 1 说明】
这是第一组数据的样例说明。
所有水果一开始的情况是 1 1 0 0 1 1 1 0 1 1 0 0,一共有 6 6 6 个块。
在第一次挑水果组成果篮的过程中,编号为 1 3 5 8 9 11 的水果被挑了出来。
之后剩下的水果是 1 0 1 1 1 0,一共 4 4 4 个块。
在第二次挑水果组成果篮的过程中,编号为 2 4 6 12 的水果被挑了出来。
之后剩下的水果是 1 1,只有 1 1 1 个块。
在第三次挑水果组成果篮的过程中,编号为 7 7 7 的水果被挑了出来。
最后剩下的水果是 1,只有 1 1 1 个块。 在第四次挑水果组成果篮的过程中,编号为 10 的水果被挑了出来。
【输入样例2】
20 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0【输出样例2】
1 5 8 11 13 14 15 17 2 6 9 12 16 18 3 7 10 19 4 20【数据规模与约定】
对于 $10\%$ 的数据,$n≤5$。对于 30 % 30\% 30% 的数据, n ≤ 1000 n≤1000 n≤1000。
对于 70 % 70\% 70% 的数据, n ≤ 50000 n≤50000 n≤50000。
对于 100 % 100\% 100% 的数据,$n≤2×10 5 5 5。
【提示】
由于数据规模较大,建议 C/C++ 选手使用 scanf 和 printf 语句输入、输出。
【代码如下】:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-f;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
#define ls (x<<1)
#define rs (x<<1|1)
#define mid ((l+r)>>1)
const int N=2e5+10;
int n,tmp,a[N],num[N<<2][2];
inline void pushup(int x){
num[x][0]=num[ls][0]+num[rs][0],num[x][1]=num[ls][1]+num[rs][1];
}
void build(int x,int l,int r){
if(l==r) return num[x][a[l]]=1,void();
build(ls,l,mid),build(rs,mid+1,r);
pushup(x);
}
void chg(int x,int l,int r,int p){
if(l==r) return num[x][0]=num[x][1]=0,void();
if(p<=mid) chg(ls,l,mid,p);
else chg(rs,mid+1,r,p);
pushup(x);
}
int que(int x,int l,int r,int p,int q,int k){
if(p>q) return 0;
if(l==p&&r==q) return num[x][k];
if(q<=mid) return que(ls,l,mid,p,q,k);
if(p>mid) return que(rs,mid+1,r,p,q,k);
return que(ls,l,mid,p,mid,k)+que(rs,mid+1,r,mid+1,q,k);
}
int erfen(int x,int l,int r,int p,int q,int k){
if(!num[x][k]) return n+1;
if(l==r) return l;
if(q<=mid) return erfen(ls,l,mid,p,q,k);
if(p>mid) return erfen(rs,mid+1,r,p,q,k);
if(que(1,1,n,p,mid,k)) return erfen(ls,l,mid,p,mid,k);
else return erfen(rs,mid+1,r,mid+1,q,k);
}
signed main(){
n=read();
for(int i=1;i<=n;++i) a[i]=read();
build(1,1,n);
for(int i=1,now=1;i<=n;++i){
printf("%d ",now),chg(1,1,n,now);
if(!que(1,1,n,now+1,n,!a[now])){
now=min(erfen(1,1,n,1,n,a[now]),erfen(1,1,n,1,n,!a[now]));
putchar('\n');
}
else now=erfen(1,1,n,now+1,n,!a[now]);
}
return 0;
}