2024-2025-1 山东大学计算机图形学期末试题回忆版
计算机科学与技术学院:辛士庆老师
选择题
- 计算机图形学之父?
- Ivan Sutherland
- 国内首个获得 SIGGRAPH 最佳论文奖的学校?
- 山大
- 打印最常用的颜色模式?
- 选项:RGB;CMYK;HSV
- CMYK
- 正
n
n
n 面体的
n
n
n 不可能是哪个?
- 选项:4;8;16;20
- 正 n n n 面体已被证明只有五个:4、6、8、12、20
- 三角网格模型,有 1000 个顶点,问有多少个三角形?
- 选项:1000;2000;3000;4000
- 欧拉公式 F + V − E = 2 F + V - E = 2 F+V−E=2;每个三角形贡献 3 条边,每条边会被重复计数 1 次,于是有 E = 3 F 2 E = \frac{ 3F }{ 2 } E=23F,代入欧拉公式解得 F = 2 V − 4 = 2 × 1000 − 4 F = 2V - 4 = 2 × 1000 - 4 F=2V−4=2×1000−4
大题
多边形扫描线算法
- 描述多边形扫描线算法
- 写出伪代码
Bezier 曲线
已知 Bezier 曲线的四个控制顶点分别为 ( 0 , 0 ) ( 0, 0 ) (0,0)、 ( 1 3 , 1 3 ) ( \frac{ 1 }{ 3 }, \frac{ 1 }{ 3 } ) (31,31)、 ( 2 3 , 2 3 ) ( \frac{ 2 }{ 3 }, \frac{ 2 }{ 3 } ) (32,32)、 ( 1 , 1 ) ( 1, 1 ) (1,1)
- 按定义式写出 x ( t ) x( t ) x(t)、 y ( t ) y( t ) y(t) 表达式
- 根据给出的控制顶点化简上述表达式
矩阵变换
平面直角坐标系 x O y xOy xOy,有一三角形,顶点分别为 A ( 1 , 0 ) A( 1, 0 ) A(1,0)、 B ( 3 , 0 ) B( 3, 0 ) B(3,0)、 C ( 2 , 3 ) C( 2, 3 ) C(2,3)
- 写出该三角形关于 y y y 轴对称后的顶点坐标
- 写出该三角形关于 y y y 轴对称后,再以 ( 2 , 0 ) ( 2, 0 ) (2,0) 为旋转中心顺时针旋转 90 ° 90° 90° 后的顶点坐标
- 写出以 ( 2 , 0 ) ( 2, 0 ) (2,0) 为旋转中心顺时针旋转 90 ° 90° 90° 的 3 × 3 3 × 3 3×3 齐次变换矩阵
Hermite 曲线与 Bezier 曲线
给定两端点 A ( 0 , 0 ) A( 0, 0 ) A(0,0) 和 B ( 1 , 1 ) B( 1, 1 ) B(1,1),切矢分别为 ( 1 , 1 ) ( 1, 1 ) (1,1) 和 ( 1 , − 1 ) ( 1, -1 ) (1,−1)
- 给出三次 H e r m i t e Hermite Hermite 曲线的一般形式的推导过程
- 根据题目给出的条件,写出 H e r m i t e Hermite Hermite 矩阵表达,以及转换为三次 B e z i e r Bezier Bezier 曲线的矩阵表达
- 列出三次 B e z i e r Bezier Bezier 曲线的控制顶点
阴影
三维直角坐标系,点光源在 ( 1 , 0 , 3 ) ( 1, 0, 3 ) (1,0,3),有一球心在 ( 0 , 0 , 1 ) ( 0, 0, 1 ) (0,0,1) 的不透明球体,其半径为 1 1 1, x O y xOy xOy 为地面,有一点 ( − 0.5 , 0.5 , 0 ) ( -0.5, 0.5, 0 ) (−0.5,0.5,0)
- 画出示意图,要求标明刻度
- 点 ( − 0.5 , 0.5 , 0 ) ( -0.5, 0.5, 0 ) (−0.5,0.5,0) 是否在阴影区域内?
- 求出阴影区域边界曲线方程
Phong 光照明模型
物体表面上一点 P P P 的单位法向量为 N N N,点 P P P 指向光源的单位向量为 L L L,反射方向的单位向量为 R R R
- 画出 P h o n g Phong Phong 光照明模型示意图
- 写出其一般形式并说明
- 写出 R R R 的表达式
透视投影
世界坐标系,视点在 ( 0 , − 1 , 0 ) ( 0, -1, 0 ) (0,−1,0),有一球心在 ( 0 , 1 , 0 ) ( 0, 1, 0 ) (0,1,0) 的球体,半径为 1 1 1,一点透视坐标系原点在视点处,坐标系方向与世界坐标系一致
- 画出能表达题意的示意图
- 写出投影矩阵
- 球体并非全部可见,请求出可见的那部分球冠的表面积
以上回忆版仅供参考,预祝各位都能取得自己理想的成绩!