信息学奥赛一本通 1309:【例1.6】回文数(Noip1999) | 洛谷 P1015 [NOIP1999 普及组] 回文数

本文解析了NOIP1999普及组回文数问题,介绍了如何通过高精度n进制运算判断及构造回文数,并提供了两种不同的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目链接】

ybt 1309:【例1.6】回文数(Noip1999)
洛谷 P1015 [NOIP1999 普及组] 回文数
注:两OJ上的问题考察内容相同,但输出要求不同

【题目考点】

1.高精度 n进制运算

数字数组每个元素保存n进制数字的1位

例:16进制数字A5F,
用数字数组表示为:a[0]:3, a[1]:15, a[2]:5, a[3]:10
十进制高精度计算函数中出现10的位置,都用n来代替,即为n进制计算。

【解题思路】

根据题目描述,先读入高精度数字。
循环进行:判断该数字是不是回文数字,如果是则输出结果,程序结束。如果不是,则循环构造其逆向的数字,然后二者加和。循环此过程。
如果到最后也没有找到回文数字,输出Impossible。

每一步原数和其倒序数相加,数值最多增加1位,最多进行30步,因此该数在100位基础上最多增加30位,因此将高精度数位数设为135。

【题解代码】

两个OJ上的输出要求不同,因而输出部分代码有差异。其它部分都是相同的。

ybt 1309:【例1.6】回文数(Noip1999):
#include<bits/stdc++.h>
using namespace std;
#define N 135
int n, a[N];
char s[N];
void tonum(char s[], int a[])//转为数字数组 
{
    int len = strlen(s);
    for(int i = 1; i <= len; ++i)
    {
        if(s[len-i] >= '0' && s[len-i] <= '9')
            a[i] = s[len-i] - '0';
        else
            a[i] = s[len-i] - 'A' + 10;
    }
    a[0] = len;
}
void genOpp(int a[], int b[])//生成a的逆向数字b 
{
    for(int i = 1; i <= a[0]; ++i)//生成a的逆向数字b 
        b[i] = a[a[0]+1-i];
    b[0] = a[0];
}
void addToA(int a[], int b[])//n进制高精度加法 a += b 
{
    int c = 0; 
    for(int i = 1; i <= a[0] || i <= b[0]; ++i)
    {
        a[i] += b[i] + c; 
        c = a[i] / n;//n进制 
        a[i] %= n;
    }
    if(c > 0)
        a[++a[0]] = c;   
}
bool isPalin(int a[])//判断数字a是否是回文的 
{
    for(int i = 1; i <= a[0]/2; ++i)//遍历一半数组 
    {
        if(a[i] != a[a[0]-i+1])
            return false;
    }
    return true;
}
int main()
{
    int b[N] = {};//b:a的逆向数字 
    cin >> n >> s;
    tonum(s, a);
    for(int i = 0; i <= 30; ++i)
    {
        if(isPalin(a))
        {
            cout << i;
            return 0;
        }
        genOpp(a, b);//生成a的逆向数字b
        addToA(a, b);//a+=b
    }
    cout << "Impossible";
    return 0;
}
洛谷 P1015 [NOIP1999 普及组] 回文数:
  • 写法1:函数
#include <bits/stdc++.h>
using namespace std;
#define N 200
int getVal(char c)
{
	if(c >= '0' && c <= '9')
		return c - '0';
	else
		return c - 'A' + 10;
}
void toNum(int a[], string s)
{
	a[0] = s.length();
	for(int i = 1; i <= a[0]; ++i)
		a[i] = getVal(s[a[0]-i]);
}
void genOpp(int a[], int b[])//把b变为a的逆序 
{
	b[0] = a[0];
	for(int i = 1; i <= b[0]; ++i)
		b[i] = a[a[0]-i+1]; 
}
bool isPalin(int a[])//a是不是回文数
{
	for(int i = 1; i <= a[0]/2; ++i)
		if(a[i] != a[a[0]-i+1])
			return false;
	return true;
}
void setLen(int a[], int i)
{
	while(a[i] == 0 && i > 1)
		i--;
	a[0] = i;
}
void Add(int a[], int b[], int k)//k进制下的a += b
{
	int c = 0, i;
	for(i = 1; i <= a[0] || i <= b[0]; ++i)
	{
		a[i] += b[i] + c;
		c = a[i] / k;
		a[i] %= k;
	}
	a[i] = c;
	setLen(a, i);
}
void showNum(int a[])
{
	for(int i = a[0]; i >= 1; --i)
		cout << a[i];
	cout << endl;
}
int main()
{
	string s;
    int n, a[N] = {}, b[N] = {};
	cin >> n >> s;
	toNum(a, s);
	for(int i = 0; i <= 30; ++i)//i:step
	{
		if(isPalin(a))
		{
			cout << "STEP=" << i;
            return 0;
        }
		genOpp(a, b);
		Add(a, b, n);
	}
	cout << "Impossible!";
    return 0;
}
  • 写法2:高精度数类
#include <bits/stdc++.h>
using namespace std;
#define N 155
struct HPN
{
	int a[N] = {};
	int base;//基数 
	HPN(){}
	int getVal(char c)
	{
		return c >= '0' && c <= '9' ? c-'0' : c-'A'+10;
	}
	HPN(string s, int b)
	{
		a[0] = s.length();
		base = b;
		for(int i = 1; i <= a[0]; ++i)
			a[i] = getVal(s[a[0]-i]);
	}	
	void setLen(int i)
	{
		while(i > 1 && a[i] == 0)
			i--;
		a[0] = i;
	}
	int& operator [] (int i)
	{
		return a[i];
	}
	HPN rev() //取本高精度数的倒序数 
	{
		HPN r("0", base);
		for(int i = 1; i <= a[0]; ++i)
			r[i] = a[a[0]-i+1];
		r[0] = a[0];
		return r;
	}
	HPN operator + (HPN b)
	{
		HPN r("0", base);
		int i, c = 0;
		for(i = 1; i <= max(a[0], b[0]); ++i)
		{
			r[i] = a[i]+b[i]+c;
			c = r[i]/base;
			r[i] %= base;
		}
		r[i] = c;
		r.setLen(i);
		return r;
	}
	bool isPalin()//判断本数是否为回文数
	{
		for(int i = 1; i <= a[0]/2; ++i)
			if(a[i] != a[a[0]+1-i])
				return false;
		return true;
	} 
};
int main()
{
	int n;
	string m;
	cin >> n >> m;
	HPN num(m, n);
	for(int i = 0; i <= 30; ++i)
	{	
		if(num.isPalin())
		{
			cout << "STEP=" << i;
			return 0;
		} 
		num = num+num.rev();
	}
	cout << "Impossible!";
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值