OpenJudge NOI 1.11 05:派

【题目链接】

OpenJudge NOI 1.11 05:派

【题目考点】

1. 二分答案
2. 实数域二分查找

【解题思路】

二分答案问题。
题目求的是每人得到的一块派的最大体积。
考虑需要满足什么条件。有 f f f个朋友,加上自己,一共 f + 1 f+1 f+1个人,每人都要有一块派,可以浪费。那么也就是说分出的派的块数要大于等于 f + 1 f+1 f+1
分出的派的数量受原有派大小的限制,假设某个派体积为pv,每人分到的一块派体积为v,那么这个派可以分出 ⌊ p v / v ⌋ \lfloor pv/v \rfloor pv/v块派。
按照这种方法求出所有派能切分出的块数,看得到的块数是否大于等于 f + 1 f+1 f+1
综上,该二分答案问题为:求满足得到派的块数大于等于 f + 1 f+1 f+1的每块派的体积的最大值。
该题为实数域二分查找问题。
【注意】:本题精度要求比较高,一般来说,精确到小数点后3位,写r-l >= 1e-4即可,而该题需要写到r-l >= 1e-5。这种情况也是可能存在的。竞赛时,精度可以写得高一些。

【题解代码】

解法1:二分答案
#include <bits/stdc++.h>
using namespace std;
#define N 10005
const double PI = acos(-1);
double pv[N];//派的体积 
int n, f;
bool check(double v)//如果每人得到体积v的派,那么可以分成的块数是否大于等于f 
{
    int s = 0;
    for(int i = 1; i <= n; ++i)
        s += int(pv[i] / v);
    return s >= f;
}
int main()
{
    cin >> n >> f;
    f++;//实际人数为f+1 
    double rad, tot = 0;//tot:所有派的总体积 
    for(int i = 1; i <= n; ++i)
    {
        cin >> rad;//第i个派的半径
        pv[i] = PI * rad * rad * 1;//第i个派的体积:底面积乘以高 
        tot += pv[i]; 
    }
    double l = 0, r = tot/f, m;//l:最小的体积 r:最大的体积 tot是体积和。每人能分到的最大体积也就是tot/f。 
    int num;
    while(r - l >= 1e-5)//本题精度要求比较高 需要差值小于1e-5 
    {
        m = (l + r) / 2;
        if(check(m))//如果每块为m,能否得到大于等于f块。如果块数足够,应该增大体积  
            l = m;
        else//如果块数不够,应该减小体积 
            r = m;
    }
    cout << fixed << setprecision(3) << m;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值