信息学奥赛一本通 1369:合并果子(fruit) | 1836:【04NOIP提高组】合并果子 | 洛谷 P1090 [NOIP2004 提高组] 合并果子

【题目链接】

ybt 1369:合并果子(fruit)
ybt 1836:【04NOIP提高组】合并果子
洛谷 P1090 [NOIP2004 提高组] 合并果子
注:ybt 1369 中n的最大值为30000,而ybt 1836与洛谷 P1090中n的最大值为10000
本题代码默认n的最大值为30000,可以通过以上各问题。

【题目考点】

1. 贪心
2. 堆/优先队列
3. 哈夫曼树

【解题思路】

解法1:贪心

1. 贪心选择性质的证明:

贪心选择:选择其中果子数量最小的两堆进行合并

设初始情况下,各堆果子的数量为 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an,其中最少的两堆为 a g a_g ag a h a_h ah
最优解指的是将所有果子合并成一堆的消耗体力最小的合并操作序列。
将两堆数量为a与b的果子合并为一堆,记为<a, b>。

  1. 证明1:存在最优解包含第一次的贪心选择
    要证明最优解包含第一次的贪心选择,即证明存在最解中包含合并操作

假设:所有的最优解中不包含合并操作< a g a_g ag, a h a_h ah>。
假设该最优解中包含合并操作< a g a_g ag, a x a_x ax>,< a h a_h ah, a y a_y ay>
显然有: a g , a h ≤ a x , a y a_{g}, a_{h} \le a_{x}, a_{y} ag,ahax,ay
情况1:如果 a y a_y ay中不包含 a g a_g ag,且 a x a_x ax中不包含 a h a_h ah。也就是说< a g a_g ag, a x a_x ax>,< a h a_h ah, a y a_y ay>合并成两堆后,又经过了多次合并后形成了一个堆。
设合并操作< a g a_g ag, a x a_x ax>,< a h a_h ah, a y a_y ay>完成合并后的这堆果子又参与了 d 1 d_1 d1次合并。合并操作< a h a_h ah, a y a_y ay>完成合并后的这堆果子又参与了 d 2 d_2 d2次合并。
不失一般性,可以假设 d 1 ≤ d 2 d_1 \le d_2 d1d2
那么这两次合并操作造成的体力消耗为 a g + a x + a h + a y a_g+a_x+a_h+a_y ag+ax+ah+ay,这两次操作合并后这两堆果子在更大的一堆果子中参与合并造成的体力消耗为 d 1 ( a g + a x ) + d 2 ( a h + a y ) d_1(a_g+a_x)+d_2(a_h+a_y) d1(ag+ax)+d2(ah+ay),总消耗为 ( d 1 + 1 ) ( a g + a x ) + ( d 2 + 1 ) ( a h + a y ) (d_1+1)(a_g+a_x)+(d_2+1)(a_h+a_y) (d1+1)(ag+ax)+(d2+1)(ah+ay)
那么如果将< a g a_g ag, a x a_x ax>,< a h a_h ah, a y a_y ay>。这两组操作替换为:< a g a_g ag a h a_h ah>, < a x a_x ax, a y a_y ay>。
< a g a_g ag a h a_h ah>合并成的堆代替原来< a g a_g ag, a x a_x ax>合并成的堆参加后面的操作,参与 d 1 d_1 d1次合并。
< a x a_x ax, a y a_y ay>合并成的堆代替原来< a h a_h ah, a y a_y ay>合并成的堆参加后面的操作,参与 d 2 d_2 d2次合并。
这两次合并以及这两次操作合并后这两堆果子参与合并造成的体力消耗为 ( d 1 + 1 ) ( a g + a h ) + ( d 2 + 1 ) ( a x + a y ) (d_1+1)(a_g+a_h)+(d_2+1)(a_x+a_y) (d1+1)(ag+ah)+(d2+1)(ax+ay)
这两个合并操作造成的两堆果子的变化是造成总体力消耗变化的唯一因素。
因此替换合并操作前这四堆果子造成的体力消耗减去替换合并操作后这四堆果子造成的体力消耗,为:
( d 1 + 1 ) ( a g + a x ) + ( d 2 + 1 ) ( a h + a y ) − ( d 1 + 1 ) ( a g + a h ) − ( d 2 + 1 ) ( a x + a y ) (d_1+1)(a_g+a_x)+(d_2+1)(a_h+a_y) - (d_1+1)(a_g+a_h)-(d_2+1)(a_x+a_y) (d1+1)(ag+ax)+(d2+1)(ah+ay)(d1+1)(ag+ah)(d2+1)(ax+ay)
= d 1 ( a x − a h ) + d 2 ( a h − a x ) =d_1(a_x-a_h)+d_2(a_h-a_x) =d1(axah)+d2(ahax)
= ( d 1 − d 2 ) ( a x − a h ) =(d_1-d_2)(a_x-a_h) =(d1d2)(axah)
已知 d 1 ≤ d 2 d_1\le d_2 d1d2 a x ≤ a h a_x\le a_h axah
所以 ( d 1 − d 2 ) ( a x − a h ) ≥ 0 (d_1-d_2)(a_x-a_h)\ge0 (d1d2)(axah)0
因此替换合并方案后,体力消耗减少或不变。这是个包含贪心选择 < a g a_g ag a h a_h ah>的最优解,与假设相悖。原命题得证。
2. 如果 a y a_y ay中包含 a g a_g ag,也就是说< a g a_g ag, a x a_x ax>合并后,再与一些其他堆经过 d d d次合并得到了 a y a_y ay,而后进行< a h a_h ah, a y a_y ay>。
< a g a_g ag, a x a_x ax>消耗体力 a g + a x a_g+a_x ag+ax,得到一个堆。这个堆参与合并直到变成 a y a_y ay,消耗体力 d ( a g + a x ) d(a_g+a_x) d(ag+ax),共消耗体力 ( d + 1 ) ( a g + a x ) (d+1)(a_g+a_x) (d+1)(ag+ax)
将以上过程中的 a x a_x ax a h a_h ah做交换,其它操作不变。
即先将< a g a_g ag, a h a_h ah>合并,而后这个堆经过 d d d次与之前相同的合并后变为 a y ′ a_y' ay。而后进行< a x a_x ax, a y ′ a_y' ay>。合并成与先前一样大的堆(因此< a h a_h ah, a y a_y ay>与< a x a_x ax, a y a_y ay’>消耗的体力相同),而后还是可以进行相同的合并操作。
合并< a g a_g ag, a h a_h ah>消耗体力 a g + a h a_g+a_h ag+ah,后续合并直到变为 a y ′ a_y' ay消耗体力 d ( a g + a h ) d(a_g+a_h) d(ag+ah),共消耗体力 ( d + 1 ) ( a g + a h ) (d+1)(a_g+a_h) (d+1)(ag+ah)
由于 a h ≤ a x a_h\le a_x ahax,所以有 ( d + 1 ) ( a g + a h ) ≤ ( d + 1 ) ( a g + a x ) (d+1)(a_g+a_h) \le (d+1)(a_g+a_x) (d+1)(ag+ah)(d+1)(ag+ax)
因此将 a x a_x ax a h a_h ah做交换后,消耗的体力减少或不变。这是个包含贪心选择 < a g a_g ag a h a_h ah>的最优解,与假设相悖。原命题得证。
3. 如果 a x a_x ax中包含 a h a_h ah,也就是说< a h a_h ah, a y a_y ay>合并后,再与一些其他堆经过 d d d次合并得到了 a x a_x ax,而后进行< a g a_g ag, a x a_x ax>。
该情况与第2点情况相同,证明方法略。

  1. 证明2:假设最优解包含前k次的贪心选择,证明最优解包含第k+1次的贪心选择
    经过前k次的贪心选择后,还剩下n-k个堆。该情况与证明1面对的情况相同,可以使用相同的方法证明最优解一定包含此时的贪心选择。

为了能在 O ( l o g n ) O(logn) O(logn)复杂度内取到所有果堆中数量最小的一堆,也就是取当前多个数字中的最小值,需要用到堆(heap)这一数据结构,C++ STL中提供了以堆为原理的优先队列(priority_queue),可以使用该容器求数字中的最小值。
将优先队列设为小顶堆,将n个数字加入到优先队列之中,每次出队两个数字,出队的两个数字就是最小的两个数字,将这两个数字加和,即为合并两堆果子。设sum记录消耗的体力,sum增加这两个数的加和。而后将这个加和加入到优先队列中。
最后sum即为消耗的最少体力。

解法2:构建哈夫曼树

果子合并的过程可以画成一棵二叉树。
每个结点表示一堆果子。
如果a, b两堆合为一堆,则可以画一个根结点g表示a,b合并后的果堆,这个结点的左孩子是a,右孩子是b。

g
a
b

整棵树的根结点就是把所有堆合并后的堆。
下图中,冒号后面的数字表示果子数量。其中堆c经过2次合并,d经过2次合并,a与b经过1次合并。

g:7
a:3
b:4
c:1
d:2

看得出一个堆经过合并的次数,就是从根结点到这个堆的路径长度。
一个堆对体力的消耗为这个堆中果子数量乘以这个堆经过合并的次数。
若以堆中果子数量为权值,那么一个堆消耗的体力正是该结点的带权路径长度。
所有堆合并在一起消耗的体力,就是整棵树的带权路径长度。
已知哈夫曼树的带权路径长度是最小的。
我们只需要让每个堆为一个结点,结点的权值就是堆中果子数量。以这些结点构建出哈夫曼树。
写法1:求出这棵哈夫曼树的带权路径长度,即为将所有果子合在一起消耗的最少体力。
写法2:哈夫曼树中每个分支节点的权值,就是合并成这堆果子消耗的体力,因此总消耗的体力就是所有分支节点权值加和。

【题解代码】

解法1:贪心
#include <bits/stdc++.h>
using namespace std;
int main()
{
	priority_queue<int, vector<int>, greater<int> > pq;//小顶堆 
	int n, a, sum = 0;//sum:体力加和
	cin >> n;
	for(int i = 1; i <= n; ++i)
	{
		cin >> a;
		pq.push(a);
	}
	while(pq.size() > 1)
	{
		int a = pq.top();
		pq.pop();
		int b = pq.top();
		pq.pop();
		sum += a+b;//体力增加这次合并后的果堆中果子的数量
		pq.push(a+b);
	}
	cout << sum;
	return 0;
}

解法2:构建哈夫曼树

  • 写法1:求树的带权路径长度
#include<bits/stdc++.h>
using namespace std;
#define N 30005
struct Node
{
    int left, right, w;
};
Node node[N];
int p, sum;//sum:树的带权路径长度
struct Cmp
{
    bool operator () (int &a, int &b)
    {
        return node[b].w < node[a].w;
    }  
};
priority_queue<int, vector<int>, Cmp> pq;
int createTree()
{
    while(pq.size() > 1)
    {
    	int np = ++p;
        node[np].left = pq.top(); 
        pq.pop();
        node[np].right = pq.top();
        pq.pop();
        node[np].w = node[node[np].left].w + node[node[np].right].w;
        pq.push(np);
    }
    return pq.top();
}
void dfs(int r, int d)//d:深度  深搜求树的带权路径长度
{
	if(node[r].left == 0 && node[r].right == 0)
	{
		sum += d*node[r].w;//sum增加结点r的带权路径长度
		return;
	}
	dfs(node[r].left, d+1);
	dfs(node[r].right, d+1);
}
int main()
{
    int n, np, root;
    cin >> n;
    for(int i = 1; i <= n; ++i)
    {
        np = p++;
        cin >> node[np].w;
        pq.push(np);
    }
    root = createTree();
    dfs(root, 0);
    cout << sum;
    return 0;
}
  • 写法2:求分支结点的权值加和
#include<bits/stdc++.h>
using namespace std;
#define N 30005
struct Node
{
    int left, right, w;
};
Node node[N];
int p;
struct Cmp
{
    bool operator () (int &a, int &b)//权值小的结点优先
    {
        return node[b].w < node[a].w;
    }  
};
priority_queue<int, vector<int>, Cmp> pq;
int createTree()
{
    while(pq.size() > 1)
    {
    	int np = ++p;
        node[np].left = pq.top(); 
        pq.pop();
        node[np].right = pq.top();
        pq.pop();
        node[np].w = node[node[np].left].w + node[node[np].right].w;
        pq.push(np);
    }
    return pq.top();
}
int sumW(int r)
{//以r为根结点的树中分支结点的权值加和
    if(node[r].left == 0 && node[r].right == 0)
        return 0;
    return sumW(node[r].left) + sumW(node[r].right) + node[r].w; 
}
int main()
{
    int n, np, root;
    cin >> n;
    for(int i = 1; i <= n; ++i)
    {
        np = p++;
        cin >> node[np].w;
        pq.push(np);
    }
    root = createTree();
    cout << sumW(root);
    return 0;
}
  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: p109 [noip2004 提高] 合并果子: 这道题目是一道经典的贪心算法题目,题目大意是给定n个果子,每个果子的重量为wi,现在需要将这n个果子合并成一个果子,每次合并需要消耗的代价为合并的两个果子的重量之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的果子进行合并,然后将合并后的果子的重量加入到集合中,重复这个过程直到只剩下一个果子为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的合并方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的果子进行合并,这样就会得到一个更小的代价,与当前选择的方案矛盾。 usaco06nov fence repair: 这道题目是一道经典的贪心算法题目,题目大意是给定n个木板,每个木板的长度为li,现在需要将这n个木板拼接成一块长度为L的木板,每次拼接需要消耗的代价为拼接的两个木板的长度之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的木板进行拼接,然后将拼接后的木板的长度加入到集合中,重复这个过程直到只剩下一个木板为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的拼接方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的木板进行拼接,这样就会得到一个更小的代价,与当前选择的方案矛盾。 ### 回答2: 题目描述: 有n个果子需要合并合并任意两个果子需要的代价为这两个果子的重量之和。现在有一台合并机器,可以将两个果子合并成一堆并计算代价。问将n个果子合并成一堆的最小代价。 这个问题可以用贪心算法来解决,我们可以使用一个最小堆来存储所有果子的重量。每次从最小堆中取出两个最小的果子,将它们合并成为一堆,并将代价加入答案中,将新堆的重量加入最小堆中。重复以上步骤,直到最小堆中只剩下一堆为止。这样得到的代价就是最小的。 证明如下: 假设最小堆中的果子按照重量从小到大依次为a1, a2, ..., an。我们按照贪心策略,每次都将重量最小的两个果子合并成为一堆,设合并的过程为b1, b2, ..., bn-1。因此,可以发现,序列b1, b2, ..., bn-1必然是一个前缀和为a1, a2, ..., an的 Huffman 树变形。根据哈夫曼树的定义,这个树必然是最优的,能够得到的代价最小。 因此,使用贪心策略得到的答案必然是最优的,而且时间复杂度为O(n log n)。 对于[usaco06nov] fence repair g这道题,其实也可以用相同的思路来解决。将所有木板的长度存储在一个最小堆中,每次取出最小的两个木板长度进行合并,代价即为这两个木板的长度之和,并将合并后木板的长度加入最小堆中。重复以上步骤,直到最小堆中只剩下一块木板。得到的代价就是最小的。 因此,贪心算法是解决这类问题的一种高效、简单但有效的方法,可以应用于很多有贪心性质的问题中。 ### 回答3: 这两个题目都需要对操作进行模拟。 首先是合并果子。这个题目先将所有果子放进一个优先队列中。每次取出来两个果子进行合并,直到只剩下一个果子即为答案。合并的代价为两个果子重量之和。每次合并完之后再将新的果子放入优先队列中,重复上述过程即可。 再来看fence repair。这个题目需要用到贪心和并查集的思想。首先将所有板子的长度放入一个最小堆中,每次取出堆顶元素即为最短的板子,将其与其相邻的板子进行合并合并的长度为这两块板子的长度之和。操作完之后再将新的板子长度放入最小堆中,重复上述过程直到只剩下一块板子。 关于合并操作,可以使用并查集来实现。维护每个板子所在的集合,每次操作时合并两个集合即可。 最后,需要注意的是题目中给出的整数都很大,需要使用long long来存储避免溢出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值