深度学习通信领域相关经典论文、数据集整理分享

    随着深度学习的发展,使用深度学习解决相关通信领域问题的研究也越来越多。作为一名通信专业的研究生,如果实验室没有相关方向的代码积累,入门并深入一个新的方向会十分艰难。同时,大部分通信领域的论文不会提供开源代码,reproducible research比较困难。 
    基于深度学习的通信论文这几年飞速增加,明显能感觉这些论文的作者更具开源精神。本项目专注于整理在通信中应用深度学习,并公开了相关源代码的论文。 

    本文资源整理自网络,源地址:https://github.com/IIT-Lab/Paper-with-Code-of-Wireless-communication-Based-on-DL

 

论文列表

    Deep Learning for SVD and Hybrid Beamforming

 

    Neural Mutual Information Estimation for Channel Coding: State-of-the-Art Estimators, Analysis, and Performance Comparison

 

    Deep Transfer Learning Based Downlink Channel Prediction for FDD Massive MIMO Systems

 

    Channel Estimation for One-Bit Multiuser Massive MIMO Using Conditional GAN

 

    A Model-Driven Deep Learning Method for Normalized Min-Sum LDPC Decoding

 

    Complex-Valued Convolutions for Modulation Recognition using Deep Learning

 

    Enabling Large Intelligent Surfaces with Compressive Sensing and Deep Learning

 

    Wireless link adaptation - a hybrid data-driven and model-based approac

 

    hDeep unfolding of the weighted MMSE algorithm

 

    Learn to Compress CSI and Allocate Resources in Vehicular Networks

 

    Benchmarking End-to-end Learning of MIMO Physical-Layer Communication

 

    Learned Conjugate Gradient Descent Network for Massive MIMO Detection

 

    Trainable Projected Gradient Detector for Massive Overloaded MIMO Channels: Data-driven Tuning Approac

 

    hDeep Soft Interference Cancellation for MIMO Detection

 

    Reinforcement Learning Based Scheduling Algorithm for Optimizing Age of Information in Ultra Reliable Low Latency Networks

 

    Decoder-in-the-Loop: Genetic Optimization-based LDPC Code Design

 

    MaMIMO CSI-based positioning using CNNs: Peeking inside the black box

 

    Learning Combinatorial Optimization Algorithms over Graphs

 

    Extending the RISC-V ISA for Efficient RNN-based 5G Radio Resource

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值