随着深度学习的发展,使用深度学习解决相关通信领域问题的研究也越来越多。作为一名通信专业的研究生,如果实验室没有相关方向的代码积累,入门并深入一个新的方向会十分艰难。同时,大部分通信领域的论文不会提供开源代码,reproducible research比较困难。
基于深度学习的通信论文这几年飞速增加,明显能感觉这些论文的作者更具开源精神。本项目专注于整理在通信中应用深度学习,并公开了相关源代码的论文。
本文资源整理自网络,源地址:https://github.com/IIT-Lab/Paper-with-Code-of-Wireless-communication-Based-on-DL
论文列表
Deep Learning for SVD and Hybrid Beamforming
Neural Mutual Information Estimation for Channel Coding: State-of-the-Art Estimators, Analysis, and Performance Comparison
Deep Transfer Learning Based Downlink Channel Prediction for FDD Massive MIMO Systems
Channel Estimation for One-Bit Multiuser Massive MIMO Using Conditional GAN
A Model-Driven Deep Learning Method for Normalized Min-Sum LDPC Decoding
Complex-Valued Convolutions for Modulation Recognition using Deep Learning
Enabling Large Intelligent Surfaces with Compressive Sensing and Deep Learning
Wireless link adaptation - a hybrid data-driven and model-based approac
hDeep unfolding of the weighted MMSE algorithm
Learn to Compress CSI and Allocate Resources in Vehicular Networks
Benchmarking End-to-end Learning of MIMO Physical-Layer Communication
Learned Conjugate Gradient Descent Network for Massive MIMO Detection
Trainable Projected Gradient Detector for Massive Overloaded MIMO Channels: Data-driven Tuning Approac
hDeep Soft Interference Cancellation for MIMO Detection
Reinforcement Learning Based Scheduling Algorithm for Optimizing Age of Information in Ultra Reliable Low Latency Networks
Decoder-in-the-Loop: Genetic Optimization-based LDPC Code Design
MaMIMO CSI-based positioning using CNNs: Peeking inside the black box
Learning Combinatorial Optimization Algorithms over Graphs
Extending the RISC-V ISA for Efficient RNN-based 5G Radio Resource