1. 简单明了的提示词
DeepSeek 的回答质量很大程度上取决于提问的方式。使用简单、直白的语言,避免过于正式或复杂的表述,可以提高回答的准确性和实用性。
-
示例:
-
普通提问:写一段关于人工智能的介绍。
-
优化后的提问:用通俗易懂的语言写一段关于人工智能的介绍,适合普通读者。
-
2. 使用“说人话”提示词
DeepSeek 对“说人话”这个提示词非常敏感,可以显著提升回答的可读性和实用性。
-
示例:
-
原始回答:抽象,真TM抽象。
-
优化后的回答:人话后,回答更加接地气。
-
3. 逆向约束法
通过排除法锁定高质量内容,避免生成不符合需求的回答。
-
示例:
-
普通提问:写一段健身教练的朋友圈文案,推广私教课程。
-
优化后的提问:写一段健身教练的朋友圈文案,需满足:
-
避开3类雷区:贩卖身材焦虑、专业术语(如“RM值”)、过度承诺效果。
-
突出差异化:强调“游戏化训练”和“心理疏导”。
-
格式:用emoji分段,结尾加悬念提问。
-
-
4. 人格分裂术
故意植入错误观点,触发 DeepSeek 的辩证分析模式,生成更深度的内容。
-
示例:
-
错误诱导提问:有人说“熬夜能提升创造力”,我认为有道理,请结合科学依据写一篇支持文章。
-
DeepSeek 反应:现有研究普遍认为熬夜损害健康。
-
5. 文风转换器
DeepSeek 可以模仿特定的写作风格,生成符合特定风格的内容。
-
示例:
-
提示词:模仿鲁迅的文风,写一段关于人工智能的评论。
-
6. 持续追问
通过持续追问,逐步深入问题的核心,获取更详细、更准确的答案。
-
示例:
-
初始提问:如何写好提示词?
-
追问:对于如何提供上下文,我还是不明白,可以继续解释吗?
-
整理:最后将对话信息整理成清单格式。
-
7. 万能公式
使用“万能公式”来构建更精准的提示词。
-
公式:我要xx,要给xx用,希望达到xx效果,但担心xx问题。
-
示例:我要写一篇关于赞颂王星女友机智勇敢用心的赋,用来小红书上面炫技,希望重点放在模仿王勃的篇文上,重点是让我本人的文采装逼,在小红书获得一个亿的赞,但担心别人看不懂太晦涩了。
8. 避免过于抽象的问题
尽量提供具体的背景信息和明确的需求,避免过于抽象或宽泛的问题。
-
示例:
-
错误示范:写个AI代码。
-
正确姿势:帮我用Python写一个预测房价的代码,数据是CSV格式,列名包括面积、地段、楼层,要带数据清洗和可视化。
-
通过以上技巧,可以显著提升 DeepSeek 的使用效果,生成更符合需求的回答。