Description
FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目。至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100)条跑道上。 农场上的跑道有一些交汇点,每条跑道都连结了两个不同的交汇点 I1_i和I2_i(1 <= I1_i <= 1,000; 1 <= I2_i <= 1,000)。每个交汇点都是至少两条跑道的端点。 奶牛们知道每条跑道的长度length_i(1 <= length_i <= 1,000),以及每条跑道连结的交汇点的编号 并且,没有哪两个交汇点由两条不同的跑道直接相连。你可以认为这些交汇点和跑道构成了一张图。 为了完成一场接力跑,所有N头奶牛在跑步开始之前都要站在某个交汇点上(有些交汇点上可能站着不只1头奶牛)。当然,她们的站位要保证她们能够将接力棒顺次传递,并且最后持棒的奶牛要停在预设的终点。 你的任务是,写一个程序,计算在接力跑的起点(S)和终点(E)确定的情况下,奶牛们跑步路径可能的最小总长度。显然,这条路径必须恰好经过N条跑道。
Input
* 第1行: 4个用空格隔开的整数:N,T,S,以及E
* 第2..T+1行: 第i+1为3个以空格隔开的整数:length_i,I1_i,以及I2_i, 描述了第i条跑道。
Output
* 第1行: 输出1个正整数,表示起点为S、终点为E,并且恰好经过N条跑道的路 径的最小长度
Sample Input
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
Sample Output
10
住院前做的一道题,没来及做完。今天刚好顺手弄掉了。
矩阵乘法优化DP
初始方程为f[i][j]=min(f[i-1][z]+d[z][j])
我们发现这和矩阵很相似
只不过是求min
于是定义矩阵a[i][j]=min(a[i][k]+a[k][i]) k为1到n
初始矩阵为离散化后的邻接表
和普通矩阵一样倍增就好了
最后ans=a[s][e]
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
struct line
{
int s,t;
int l;
}a[101];
int b[202],c[202];
int h[1000001];
int map[202][202];
int a1[202][202],a2[202][202],a3[202][202];
int p;
inline void solve(int n)
{
int i,j,ii,jj;
while(n!=0)
{
if(n%2==1)
{
memset(a3,127/3,sizeof(a3));
for(i=1;i<=p;i++)
for(j=1;j<=p;j++)
for(ii=1;ii<=p;ii++)
a3[i][j]=min(a1[i][ii]+a2[ii][j],a3[i][j]);
for(i=1;i<=p;i++)
for(j=1;j<=p;j++)
a1[i][j]=a3[i][j];
}
memset(a3,127/3,sizeof(a3));
for(i=1;i<=p;i++)
for(j=1;j<=p;j++)
for(ii=1;ii<=p;ii++)
a3[i][j]=min(a2[i][ii]+a2[ii][j],a3[i][j]);
for(i=1;i<=p;i++)
for(j=1;j<=p;j++)
a2[i][j]=a3[i][j];
n=n/2;
}
}
int main()
{
int n,t,s,e;
scanf("%d%d%d%d",&n,&t,&s,&e);
int i,j;
int ss=0;
for(i=1;i<=t;i++)
{
scanf("%d%d%d",&a[i].l,&a[i].s,&a[i].t);
ss++;
b[ss]=a[i].s;
ss++;
b[ss]=a[i].t;
}
sort(b+1,b+1+ss);
p++;
c[p]=b[1];
h[b[1]]=p;
for(i=1;i<=ss;i++)
{
if(b[i]!=c[p])
{
p++;
c[p]=b[i];
h[b[i]]=p;
}
}
int x,y;
memset(a2,127/3,sizeof(a2));
for(i=1;i<=t;i++)
{
x=h[a[i].s];
y=h[a[i].t];
a2[x][y]=min(a[i].l,a2[x][y]);
a2[y][x]=min(a[i].l,a2[y][x]);
}
memset(a1,127/3,sizeof(a1));
for(i=1;i<=p;i++)
a1[i][i]=0;
solve(n);
//int ans=2100000000;
/*for(i=1;i<=p;i++)
{
for(j=1;j<=p;j++)
printf("%d ",a1[i][j]);
printf("\n");
}*/
printf("%d\n",a1[h[s]][h[e]]);
return 0;
}