bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑

Description

FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目。至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100)条跑道上。 农场上的跑道有一些交汇点,每条跑道都连结了两个不同的交汇点 I1_i和I2_i(1 <= I1_i <= 1,000; 1 <= I2_i <= 1,000)。每个交汇点都是至少两条跑道的端点。 奶牛们知道每条跑道的长度length_i(1 <= length_i <= 1,000),以及每条跑道连结的交汇点的编号 并且,没有哪两个交汇点由两条不同的跑道直接相连。你可以认为这些交汇点和跑道构成了一张图。 为了完成一场接力跑,所有N头奶牛在跑步开始之前都要站在某个交汇点上(有些交汇点上可能站着不只1头奶牛)。当然,她们的站位要保证她们能够将接力棒顺次传递,并且最后持棒的奶牛要停在预设的终点。 你的任务是,写一个程序,计算在接力跑的起点(S)和终点(E)确定的情况下,奶牛们跑步路径可能的最小总长度。显然,这条路径必须恰好经过N条跑道。

Input

* 第1行: 4个用空格隔开的整数:N,T,S,以及E

* 第2..T+1行: 第i+1为3个以空格隔开的整数:length_i,I1_i,以及I2_i, 描述了第i条跑道。

Output

* 第1行: 输出1个正整数,表示起点为S、终点为E,并且恰好经过N条跑道的路 径的最小长度

Sample Input

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

Sample Output

10

住院前做的一道题,没来及做完。今天刚好顺手弄掉了。
矩阵乘法优化DP
初始方程为f[i][j]=min(f[i-1][z]+d[z][j])
我们发现这和矩阵很相似
只不过是求min
于是定义矩阵a[i][j]=min(a[i][k]+a[k][i]) k为1到n
初始矩阵为离散化后的邻接表
和普通矩阵一样倍增就好了
最后ans=a[s][e]

#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
struct line
{
     int s,t;
     int l;
}a[101];
int b[202],c[202];
int h[1000001];
int map[202][202];
int a1[202][202],a2[202][202],a3[202][202];
int p;
inline void solve(int n)
{
     int i,j,ii,jj;
     while(n!=0)
     {
          if(n%2==1)
          {
          	   memset(a3,127/3,sizeof(a3));
               for(i=1;i<=p;i++)
                    for(j=1;j<=p;j++)
                         for(ii=1;ii<=p;ii++)
                              a3[i][j]=min(a1[i][ii]+a2[ii][j],a3[i][j]);
              for(i=1;i<=p;i++)
                   for(j=1;j<=p;j++)
                        a1[i][j]=a3[i][j];
          }
		  memset(a3,127/3,sizeof(a3));
          for(i=1;i<=p;i++)
               for(j=1;j<=p;j++)
                    for(ii=1;ii<=p;ii++)
                         a3[i][j]=min(a2[i][ii]+a2[ii][j],a3[i][j]);
         for(i=1;i<=p;i++)
              for(j=1;j<=p;j++)
                   a2[i][j]=a3[i][j];
          n=n/2;
     }
}
int main()
{
     int n,t,s,e;
     scanf("%d%d%d%d",&n,&t,&s,&e);
     int i,j;
	 int ss=0;
     for(i=1;i<=t;i++)
     {
          scanf("%d%d%d",&a[i].l,&a[i].s,&a[i].t);
          ss++;
          b[ss]=a[i].s;
          ss++;
          b[ss]=a[i].t;
     }
     sort(b+1,b+1+ss);
     p++;
     c[p]=b[1];
     h[b[1]]=p;
     for(i=1;i<=ss;i++)
     {
          if(b[i]!=c[p])
          {
               p++;
               c[p]=b[i];
               h[b[i]]=p;
          }
     }
     int x,y;
     memset(a2,127/3,sizeof(a2));
     for(i=1;i<=t;i++)
     {
          x=h[a[i].s];
          y=h[a[i].t];
          a2[x][y]=min(a[i].l,a2[x][y]);
          a2[y][x]=min(a[i].l,a2[y][x]);
     }
     memset(a1,127/3,sizeof(a1));
     for(i=1;i<=p;i++)
          a1[i][i]=0;
     solve(n);
     //int ans=2100000000;
     /*for(i=1;i<=p;i++)
     {
          for(j=1;j<=p;j++)
               printf("%d ",a1[i][j]);
          printf("\n");
     }*/
     printf("%d\n",a1[h[s]][h[e]]);
     return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值