bzoj 1856: [Scoi2010]字符串

Description

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

Input

输入数据是一行,包括2个数字n和m

Output

输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数

Sample Input

2 2

Sample Output

2

HINT

【数据范围】
对于30%的数据,保证1<=m<=n<=1000
对于100%的数据,保证1<=m<=n<=1000000


1看成进栈0看成出栈,那么就可以想到卡特兰数【我数学不好所以没想到】

ans=c(m+n,m)-c(m+n,m-1)

其实逆元就可以卡过去了。不过有种更好的方法

↓                                                                              ↓

http://blog.csdn.net/whjpji/article/details/7303844

我写的是逆元直接做

#include<cstdio>
using namespace std;
//c(m+n,m)-c(m+n,m-1)
long long mod=20100403;
long long d[2000001],dx[2000001];
inline long long power(long long x,long long y)
{
	 int t=1;
     while(y!=0)
     {
          if(y&1)
               t=t*x%mod;
          x=x*x%mod;
          y>>=1;
     }
     return t;
}
int main()
{
     long long n,m;
     scanf("%lld%lld",&n,&m);
     long long i;
     d[0]=1;
     for(i=1;i<=n+1;i++)
     {
          d[i]=d[i-1]*i%mod;
          dx[i]=power(d[i],mod-2);
     }
     for(i=n+2;i<=n+m;i++)
          d[i]=d[i-1]*i%mod;
     long long ans=(d[n+m]*dx[n]%mod)*dx[m]%mod-(d[n+m]*dx[n+1]%mod)*dx[m-1]%mod;
     if(ans<0)
          ans+=mod;
     printf("%lld\n",ans);
     return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值