Description
lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?
Input
输入数据是一行,包括2个数字n和m
Output
输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数
Sample Input
2 2
Sample Output
2
HINT
【数据范围】
对于30%的数据,保证1<=m<=n<=1000
对于100%的数据,保证1<=m<=n<=1000000
1看成进栈0看成出栈,那么就可以想到卡特兰数【我数学不好所以没想到】
ans=c(m+n,m)-c(m+n,m-1)
其实逆元就可以卡过去了。不过有种更好的方法
↓ ↓
http://blog.csdn.net/whjpji/article/details/7303844
我写的是逆元直接做
#include<cstdio>
using namespace std;
//c(m+n,m)-c(m+n,m-1)
long long mod=20100403;
long long d[2000001],dx[2000001];
inline long long power(long long x,long long y)
{
int t=1;
while(y!=0)
{
if(y&1)
t=t*x%mod;
x=x*x%mod;
y>>=1;
}
return t;
}
int main()
{
long long n,m;
scanf("%lld%lld",&n,&m);
long long i;
d[0]=1;
for(i=1;i<=n+1;i++)
{
d[i]=d[i-1]*i%mod;
dx[i]=power(d[i],mod-2);
}
for(i=n+2;i<=n+m;i++)
d[i]=d[i-1]*i%mod;
long long ans=(d[n+m]*dx[n]%mod)*dx[m]%mod-(d[n+m]*dx[n+1]%mod)*dx[m-1]%mod;
if(ans<0)
ans+=mod;
printf("%lld\n",ans);
return 0;
}