前向神经网络小试身手

三层全连接神经网络:输入层(2个节点)、隐藏层(3个节点)、输出层(1个节点)

x为输入,w1第一层节点的参数,w2第二层节点的参数,y为输出

import tensorflow as tf
w1 = tf.Variable(tf.random_normal((2, 3), stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal((3, 1), stddev=1, seed=1))

x = tf.constant([[0.7, 0.9]])

a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

sess = tf.Session()
with sess.as_default():
    sess.run(w1.initializer)
    sess.run(w2.initializer)
    print(sess.run(y))

程序的第一步定义了Tensorflow计算图中所有的计算,但是被定义的计算并不运行。

第二步声明一个会话,并通过会话计算结果。

虽然定义变量时给出了初始化方法,但并没有运行,所以在计算y时需要运行w1.initializer,w2.initializer给变量赋值。也有一种快捷方式可以一次性实现所有变量的初始化,函数tf.global_variables_initializer(),因此程序第二步with语句中的代码可以改为:

with sess.as_default():
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    print(sess.run(y))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值