三层全连接神经网络:输入层(2个节点)、隐藏层(3个节点)、输出层(1个节点)
x为输入,w1第一层节点的参数,w2第二层节点的参数,y为输出
import tensorflow as tf
w1 = tf.Variable(tf.random_normal((2, 3), stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal((3, 1), stddev=1, seed=1))
x = tf.constant([[0.7, 0.9]])
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)
sess = tf.Session()
with sess.as_default():
sess.run(w1.initializer)
sess.run(w2.initializer)
print(sess.run(y))
程序的第一步定义了Tensorflow计算图中所有的计算,但是被定义的计算并不运行。
第二步声明一个会话,并通过会话计算结果。
虽然定义变量时给出了初始化方法,但并没有运行,所以在计算y时需要运行w1.initializer,w2.initializer给变量赋值。也有一种快捷方式可以一次性实现所有变量的初始化,函数tf.global_variables_initializer(),因此程序第二步with语句中的代码可以改为:
with sess.as_default():
init_op = tf.global_variables_initializer()
sess.run(init_op)
print(sess.run(y))