一个正整数,如果它能被7整除,或者它的十进制表示法中某个位数上的数字为7,则称其为与7相关的数。求所有小于等于N的与7无关的正整数的平方和。
例如:N = 8,<= 8与7无关的数包括:1 2 3 4 5 6 8,平方和为:155。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^6)
Output
共T行,每行一个数,对应T个测试的计算结果。
Sample Input
5
4
5
6
7
8
Sample Output
30
55
91
91
155
分析:
这道题目 要利用打表思想啊 我开始都写在了主函数里 运行时间是打表前的十几倍 what ?!
//时间超限的代码
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
long long sum[1000003];
bool mark[1000003];
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(mark,true,sizeof(mark));
sum[0]=0;
long long i,j;
for(i=1;i<=n;i++)
{
if(i%7==0)
{
mark[i]=false;
continue;
}
j=i;
while(j){
if(j%10==7)
{
mark[i]=false;
break;
}
j/=10;
}
}
for(i=1;i<=n;i++)
if(mark[i])
sum[i]=sum[i-1]+i*i;
else
sum[i]=sum[i-1];
printf("%lld\n",sum[n]);
}
return 0;
}
运行结果截图
正确的代码:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
long long sum[1000010];
bool mark[1000010];
void seven(){
memset(mark,true,sizeof(mark));
sum[0]=0;
long long i,j;
for(i=1;i<=1000000;i++)
{
if(i%7==0)
{
mark[i]=false;
continue;
}
j=i;
while(j){
if(j%10==7){
mark[i]=false;
break;
}
j/=10;
}
}
for(i=1;i<=1000000;i++){
if(mark[i])
sum[i]=sum[i-1]+i*i;
else
sum[i]=sum[i-1];
}
}
int main()
{
seven();
long long t,n;
scanf("%lld",&t);
while(t--){
scanf("%lld",&n);
printf("%lld\n",sum[n]);
}
return 0;
}
运行结果截图