跨模态检索:基于OpenAI的Clip预训练模型构建以文搜图系统

目录

1 项目背景

2 关键技术

2.1 Clip模型

2.2 Milvus向量数据库

 3 系统代码实现

3.1 运行环境构建

3.2 数据集下载

3.3 预训练模型下载

3.4 代码实现

3.4.1 创建向量表和索引

 3.4.2 构建向量编码模型

3.4.3 数据向量化与加载

3.4.4 构建检索web

4 总结


1 项目背景

以文搜图是一种跨模态检索技术,即通过输入文字描述来搜索图片,它不仅应用于辅助搜索与信息检索,尤其在难以用关键词准确描述情况下发挥作用,提供了一种高效的信息检索方式。这种技术应用场景和价值非常广泛,它在辅助信息搜索、艺术、广告等领域均有重要的应用价值,为用户提供更个性化的搜索体验。以文搜图涉及到的技术点如下:

  • 如何对文本数据进行向量编码
  • 如何对海量图片数据进行向量化和存储
  • 如何映射文本向量与图片向量的关系
  • 如何快速对海量的向量数据进行检索

本项目基于OpenAI的Clip预训练模型结合Milvus向量数据库,在水果数据集上实现了以文搜图系统,读者可以将数据集扩展到其它领域,构建满足自身业务的以文搜图系统。

2 关键技术

2.1 Clip模型

CLIP全称Constrastive Language-Image Pre-training,是OpenAI推出的采用对比学习的文本-图像预训练模型。CLIP惊艳之处在于架构非常简洁且效果好到难以置信,在zero-shot文本-图像检索,zero-shot图像分类,文本→图像生成任务guidance,open-domain 检测分割等任务上均有非常惊艳的表现。

CLIP的创新之处在于,它能够将图像和文本映射到一个共享的向量空间中,从而使得模型能够理解图像和文本之间的语义关系。这种共享的向量空间使得CLIP在图像和文本之间实现了无监督的联合学习,从而可以用于各种视觉和语言任务。

CLIP的设计灵感源于一个简单的思想:让模型理解图像和文本之间的关系,不仅仅是通过监督训练,而是通过自监督的方式。CLIP通过大量的图像和文本对来训练,使得模型在向量空间中将相应的图像和文本嵌入彼此相近。


CLIP模型的特点

  • 统一的向量空间: CLIP的一个关键创新是将图像和文本都映射到同一个向量空间中。这使得模型能够直接在向量空间中计算图像和文本之间的相似性,而无需额外的中间表示。
  •  对比学习: CLIP使用对比学习的方式进行预训练。模型被要求将来自同一个样本的图像和文本嵌入映射到相近的位置,而将来自不同样本的嵌入映射到较远的位置。这使得模型能够学习到图像和文本之间的共同特征。
  •  多语言支持: CLIP的预训练模型是多语言的,这意味着它可以处理多种语言的文本,并将它们嵌入到共享的向量空间中。
  •  无监督学习: CLIP的预训练是无监督的,这意味着它不需要大量标注数据来指导训练。它从互联网上的文本和图像数据中学习,使得它在各种领域的任务上都能够表现出色。

Clip模型详细介绍:Clip模型详解

2.2 Milvus向量数据库

Milvus 是一款云原生向量数据库,它具备高可用、高性能、易拓展的特点,用于海量向量数据的实时召回。

Milvus 基于FAISS、Annoy、HNSW 等向量搜索库构建,核心是解决稠密向量相似度检索的问题。在向量检索库的基础上,Milvus 支持数据分区分片、数据持久化、增量数据摄取、标量向量混合查询、time travel 等功能,同时大幅优化了向量检索的性能,可满足任何向量检索场景的应用需求。通常,建议用户使用 Kubernetes 部署 Milvus,以获得最佳可用性和弹性。

Milvus 采用共享存储架构,​存储计算完全分离​,计算节点支持横向扩展。从架构上来看,Milvus 遵循数据流和控制流分离,整体分为了四个层次,分别为接入层(access layer)、协调服务(coordinator service)、执行节点(worker node)和存储层(storage)。各个层次相互独立,独立扩展和容灾。

 Milvus 向量数据库能够帮助用户轻松应对海量非结构化数据(图片/视频/语音/文本)检索。单节点 Milvus 可以在秒内完成十亿级的向量搜索,分布式架构亦能满足用户的水平扩展需求。

milvus特点总结如下:

  • 高性能:性能高超,可对海量数据集进行向量相似度检索。
  • 高可用、高可靠:Milvus 支持在云上扩展,其容灾能力能够保证服务高可用。
  • 混合查询:Milvus 支持在向量相似度检索过程中进行标量字段过滤,实现混合查询。
  • 开发者友好:支持多语言、多工具的 Milvus 生态系统。

Milvus详细介绍:Miluvs详解

 3 系统代码实现

3.1 运行环境构建

conda环境准备详见:annoconda

git clone https://gitcode.net/ai-medical/text_image_search.git
cd text_image_search

pip install -r requirements.txt
pip install git+https://ghproxy.com/https://github.com/openai/CLIP.git

3.2 数据集下载

下载地址:

第一个数据包:package01

第二个数据包:package01

在数据集目录下,存放着10个文件夹,文件夹名称为水果类型,每个文件夹包含几百到几千张此类水果的图片,如下图所示:

 以apple文件夹为例,内容如下:

下载后进行解压,保存到D:/dataset/fruit目录下,查看显示如下

# ll fruit/
总用量 508
drwxr-xr-x 2 root root 36864 8月   2 16:35 apple
drwxr-xr-x 2 root root 24576 8月   2 16:36 apricot
drwxr-xr-x 2 root root 40960 8月   2 16:36 banana
drwxr-xr-x 2 root root 20480 8月   2 16:36 blueberry
drwxr-xr-x 2 root root 45056 8月   2 16:37 cherry
drwxr-xr-x 2 root root 12288 8月   2 16:37 citrus
drwxr-xr-x 2 root root 49152 8月   2 16:38 grape
drwxr-xr-x 2 root root 16384 8月   2 16:38 lemon
drwxr-xr-x 2 root root 36864 8月   2 16:39 litchi
drwxr-xr-x 2 root root 49152 8月   2 16:39 mango

3.3 预训练模型下载

预训练模型包含5个resnet和4个VIT,其中ViT-L/14@336px效果最好。

"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",

下载ViT-L/14@336px的预训练模型:ViT-L-14-336px.pt,存放到D:/models目录下

3.4 代码实现

3.4.1 创建向量表和索引

from pymilvus import connections, db

conn = connections.connect(host="192.168.1.156", port=19530)
database = db.create_database("text_image_db")

db.using_database("text_image_db")
print(db.list_database())

创建collection

from pymilvus import CollectionSchema, FieldSchema, DataType
from pymilvus import Collection, db, connections


conn = connections.connect(host="192.168.1.156", port=19530)
db.using_database("text_image_db")

m_id = FieldSchema(name="m_id", dtype=DataType.INT64, is_primary=True,)
embeding = FieldSchema(name="embeding", dtype=DataType.FLOAT_VECTOR, dim=768,)
path = FieldSchema(name="path", dtype=DataType.VARCHAR, max_length=256,)
schema = CollectionSchema(
  fields=[m_id, embeding, path],
  description="text to image embeding search",
  enable_dynamic_field=True
)

collection_name = "text_image_vector"
collection = Collection(name=collection_name, schema=schema, using='default', shards_num=2)

创建index

from pymilvus import Collection, utility, connections, db

conn = connections.connect(host="192.168.1.156", port=19530)
db.using_database("text_image_db")

index_params = {
  "metric_type": "IP",
  "index_type": "IVF_FLAT",
  "params": {"nlist": 1024}
}

collection = Collection("text_image_vector")
collection.create_index(
  field_name="embeding",
  index_params=index_params
)

utility.index_building_progress("text_image_vector")

 3.4.2 构建向量编码模型

加载预训练模型,通过Clip模型对图片进行编码,编码后输出特征维度为768

from torchvision.models import resnet50
import torch
from torchvision import transforms
from torch import nn


class RestnetEmbeding:
    pretrained_model = 'D:/models/resnet50-0676ba61.pth'

    def __init__(self):
        self.model = resnet50()
        self.model.load_state_dict(torch.load(self.pretrained_model))

        # delete fc layer
        self.model.fc = nn.Sequential()
        self.transform = transforms.Compose([transforms.Resize((224, 224)),
                                             transforms.ToTensor(),
                                             transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
                                                                  std=[0.26862954, 0.26130258, 0.27577711])])

    def embeding(self, image):
        trans_image = self.transform(image)
        trans_image = trans_image.unsqueeze_(0)
        return self.model(trans_image)


restnet_embeding = RestnetEmbeding()

3.4.3 数据向量化与加载

from clip_embeding import clip_embeding
from milvus_operator import text_image_vector, MilvusOperator
from PIL import Image
import os


def update_image_vector(data_path, operator: MilvusOperator):
    idxs, embedings, paths = [], [], []

    total_count = 0
    for dir_name in os.listdir(data_path):
        sub_dir = os.path.join(data_path, dir_name)
        for file in os.listdir(sub_dir):

            image = Image.open(os.path.join(sub_dir, file)).convert('RGB')
            embeding = clip_embeding.embeding_image(image)

            idxs.append(total_count)
            embedings.append(embeding[0].detach().numpy().tolist())
            paths.append(os.path.join(sub_dir, file))
            total_count += 1

            if total_count % 50 == 0:
                data = [idxs, embedings, paths]
                operator.insert_data(data)

                print(f'success insert {operator.coll_name} items:{len(idxs)}')
                idxs, embedings, paths = [], [], []

        if len(idxs):
            data = [idxs, embedings, paths]
            operator.insert_data(data)
            print(f'success insert {operator.coll_name} items:{len(idxs)}')

    print(f'finish update {operator.coll_name} items: {total_count}')


if __name__ == '__main__':
    data_dir = 'D:/dataset/fruit'
    update_image_vector(data_dir, text_image_vector)

3.4.4 构建检索web

import gradio as gr
import torch
import argparse
from net_helper import net_helper
from PIL import Image
from clip_embeding import clip_embeding
from milvus_operator import text_image_vector


def image_search(text):
    if text is None:
        return None

    # clip编码
    imput_embeding = clip_embeding.embeding_text(text)
    imput_embeding = imput_embeding[0].detach().cpu().numpy()

    results = text_image_vector.search_data(imput_embeding)
    pil_images = [Image.open(result['path']) for result in results]
    return pil_images


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true",
                        default=False, help="share gradio app")
    args = parser.parse_args()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    app = gr.Blocks(theme='default', title="image",
                    css=".gradio-container, .gradio-container button {background-color: #009FCC} "
                        "footer {visibility: hidden}")
    with app:
        with gr.Tabs():
            with gr.TabItem("image search"):
                with gr.Row():
                    with gr.Column():
                        text = gr.TextArea(label="Text",
                                           placeholder="description",
                                           value="",)
                        btn = gr.Button(label="search")

                    with gr.Column():
                        with gr.Row():
                            output_images = [gr.outputs.Image(type="pil", label=None) for _ in range(16)]

                btn.click(image_search, inputs=[text], outputs=output_images, show_progress=True)

    ip_addr = net_helper.get_host_ip()
    app.queue(concurrency_count=3).launch(show_api=False, share=True, server_name=ip_addr, server_port=9099)

4 总结

本项目基于OpenAI的Clip预训练模型及milvus向量数据库两个关键技术,构建了以文搜图的跨模态检索系统;经过Clip模型编码后每个图片输出向量维度为768,存入milvus向量数据库;为保证图像检索的效率,通过脚本在milvus向量数据库中构建了向量索引。此项目可作为参考,在实际开发类似的信息检索项目中使用。

项目完整代码地址:code

  • 3
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
### 回答1: 是的,以图搜文和以文搜图都是多模态信息检索,即结合了多种不同的信息模态来进行信息检索。其中,以图搜文使用图像作为查询输入,以文本作为返回结果;以文搜图则相反,使用文本作为查询输入,以图像作为返回结果。这种多模态的信息检索方式可以更加全面、准确地满足用户的信息需求。 ### 回答2: 以图搜文和以文搜图都可以被视为多模态信息检索的一种形式。多模态信息检索是指从多个媒体模态检索相关信息的过程。在以图搜文中,用户通过提供一张图片来检索与图片相关的文本信息。系统会根据图片的内容特征,比如颜色、纹理、形状等,找到与之相似的文本信息。这样的检索方式可以应用于图片搜索引擎、图书馆信息检索等领域。 而以文搜图则是用户通过输入一段文字来检索相关的图片信息。系统会根据文字的关键词、语义等特征来寻找与之相关的图片。这在广告推荐、商品搜索等场景中很常见。用户可以通过输入商品的名称、描述等信息来寻找与之相关的图片。 总之,无论是以图搜文还是以文搜图,都涉及到从一种模态(图像或文本)向另一种模态(文本或图像)的信息转换或匹配。因此,这两种检索方式都可以被视为多模态信息检索的一种形式。 ### 回答3: 以图搜文和以文搜图都属于多模态信息检索多模态信息检索是指通过多种模态的输入数据(如文本、图像、音频等)进行信息检索的技术。以图搜文是指通过输入一张图片,系统能够理解图片的内容并返回相关的文本信息;以文搜图是指通过输入一段文本,系统能够理解文本的含义并返回相关的图片信息。 这两种方法都涉及到不同模态数据之间的关联和相互转换。以图搜文通过图像识别和理解技术将图片转化为文本,然后使用文本检索的方法进行检索以文搜图则是通过文本理解和语义分析技术将文本转化为图像的相关特征,然后使用图像检索的方法进行检索多模态信息检索技术将不同模态之间的信息融合起来,能够提供更丰富、多样化的检索结果,同时也能够满足用户在特定场景下对于不同模态呈现方式的需求。无论是以图搜文还是以文搜图,都属于多模态信息检索的范畴。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智慧医疗探索者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值