PASCAL VOC 2012 and SBD (the augment dataset) 总结

在阅读DeepLab时,发现paper中首先介绍了PASCAL VOC 2012数据集,然后又说使用一个augment后的dataset来进行训练。论文中是这样说的:

The proposed models are evaluated on the PASCAL VOC 2012 semantic segmentation benchmark [1] which contains 20 foreground object classes and one background class. The original dataset contains 1, 464 (train), 1, 449 (val ), and 1, 456 (test) pixel-level annotated images. We augment the dataset by the extra annotations provided by [76], resulting in 10, 582 (trainaug) training images. The performance is measured in terms of pixel intersection-over-union averaged across the 21 classes (mIOU).

接下来看一下这个original dataset和augment the datase的区别。

一、PASCAL VOC 2012 segmentation

VOC 2012官方已经说的非常清楚,1464 (train), 1449 (val), and 1456 (test).
详细的分布如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值