Pytorch加载COCO预训练DeepLabV3

DeeplabV3 ResNet101

Pytorch可以直接加载用COCO预训练过的DeeplabV3模型,用于分割问题。模型在COCO train2017的一个子集上进行预训练,训练集包含20个Pascal VOC中的类别。

调用

对于ResNet101为backbone的DeeplabV3,可以直接使用如下API调用:

torchvision.models.segmentation.deeplabv3_resnet101
(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)

torchvision.models.segmentation源码

API部分的源码,定义网络。源码见pytorch官网

接口的定义函数deeplabv3_resnet101

主要参数为:网络的结构(fcn或deeplabv3),主干网络(resnet50或resnet101)。

def deeplabv3_resnet101(pretrained=False, progress=True,
                        num_classes=21, aux_loss=None, **kwargs):
    """Constructs a DeepLabV3 model with a ResNet-101 backbone.

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017 which
            contains the same classes as Pascal VOC
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _load_model('deeplabv3', 'resnet101', pretrained, progress, num_classes, aux_loss, **kwargs)

加载模型的函数_load_model

def _load_model(arch_type, backbone, pretrained, progress, num_classes, aux_loss, **kwargs):
    if pretrained:
        aux_loss = True
    model = _segm_resnet(arch_type, backbone, num_classes, aux_loss, **kwargs)
    if pretrained:
        arch = arch_type + '_' + backbone + '_coco'
        model_url = model_urls[arch]
        if model_url is None:
            raise NotImplementedError('pretrained {} is not supported as of now'.format(arch))
        else:
            state_dict = load_state_dict_from_url(model_url, progress=progress)
            model.load_state_dict(state_dict)
    return model

创建用于分割的resnet函数_segm_resnet

def _segm_resnet(name, backbone_name, num_classes, aux, pretrained_backbone=True):
    backbone = resnet.__dict__[backbone_name](
        pretrained=pretrained_backbone,
        replace_stride_with_dilation=[False, True, True])

    return_layers = {
   'layer4': 'out'}
    if aux:
        return_layers['layer3'] = 'aux'
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)

    aux_classif
  • 0
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值