利用svd进行用户商品推荐的小实践

本文介绍了一个使用Python和numpy实现的基于Singular Value Decomposition (SVD)的商品推荐系统。通过计算用户评分数据的欧氏距离和余弦相似度,对未评分商品进行预测评分,并推荐评分最高的项目。示例展示了如何对特定用户进行商品推荐,并给出了推荐结果。
摘要由CSDN通过智能技术生成
from numpy import *
from numpy import linalg as la

def ecludSim(inA, inB):
    return 1.0/(1.0+ la.norm(inA - inB))

def cosSim(inA, inB):
    num = float(inA.T*inB)
    denom = la.norm(inA)*la.norm(inB)
    return 0.5+0.5*(num/denom)

def standEst(dataMat, user, simMeas, item):
    n = shape(dataMat)[1]
    simTotal = 0.0; ratSimTotal = 0.0
    for j in range(n):
        userRating = dataMat[user,j]
        if userRating == 0:continue
        overLap = nonzero(logical_and(dataMat[:,item].A>0,dataMat[:,j].A>0))[0]
        if len(overLap) == 0:similarity = 0
        else:similarity = simMeas(dataMat[overLap,item],dataMat[overLap,j])
        simTotal += similarity
        ratSimTotal += similarity * userRating
    if simTotal == 0:return 0
    else: return ratSimTotal/simTotal

def r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值