最长公共子序列(Longest-Common-Subsequence,LCS)

一个字符串S,去掉零个或者多个元素所剩下的子串称为S的子序列。最长公共子序列就是寻找两个给定序列的子序列,该子序列在两个序列中以相同的顺序出现,但是不必要是连续的。

例如序列X=ABCBDAB,Y=BDCABA。序列BCA是X和Y的一个公共子序列,但是不是X和Y的最长公共子序列,子序列BCBA是X和Y的一个LCS,序列BDAB也是。

寻找LCS的一种方法是枚举X所有的子序列,然后注意检查是否是Y的子序列,并随时记录发现的最长子序列。假设X有m个元素,则X有2^m个子序列,指数级的时间,对长序列不实际。

使用动态规划求解这个问题,先寻找最优子结构。设X=<x1,x2,…,xm>和Y=<y1,y2,…,yn>为两个序列,LCS(X,Y)表示X和Y的一个最长公共子序列,可以看出

  1. 如果xm=yn,则LCS ( X,Y ) = xm + LCS ( Xm-1,Yn-1 )。
  2. 如果xm!=yn,则LCS( X,Y )= max{ LCS ( Xm-1, Y ), LCS ( X, Yn-1 ) }

LCS问题也具有重叠子问题性质:为找出X和Y的一个LCS,可能需要找X和Yn-1的一个LCS以及Xm-1和Y的一个LCS。但这两个子问题都包含着找Xm-1和Yn-1的一个LCS,等等.

DP最终处理的还是数值(极值做最优解),找到了最优值,就找到了最优方案;为了找到最长的LCS,我们定义dp[i][j]记录序列LCS的长度,合法状态的初始值为当序列X的长度为0或Y的长度为0,公共子序列LCS长度为0,即dp[i][j]=0,所以用i和j分别表示序列X的长度和序列Y的长度,状态转移方程为

  1. dp[i][j] = 0  如果i=0或j=0
  2. dp[i][j] = dp[i-1][j-1] + 1  如果X[i-1] = Y[i-1]
  3. dp[i][j] = max{ dp[i-1][j], dp[i][j-1] }  如果X[i-1] != Y[i-1]

求出了最长公共子序列的长度后,输出LCS就是输出dp的最优方案了,这在01背包中已经讲过,既可以用一个额外的矩阵存储路径,也可以直接根据状态转移矩阵倒推最优方案。代码如下:

#include <iostream>
using namespace std;
 
/* LCS
 * 设序列长度都不超过20
*/
 
int dp[21][21]; /* 存储LCS长度, 下标i,j表示序列X,Y长度 */
char X[21];
char Y[21];
int i, j;
 
void main()
{
    cin.getline(X,20);
    cin.getline(Y,20);
 
    int xlen = strlen(X);
    int ylen = strlen(Y);
 
    /* dp[0-xlen][0] & dp[0][0-ylen] 都已初始化0 */
    for(i = 1; i <= xlen; ++i)
    {
        for(j = 1; j <= ylen; ++j)
        {
            if(X[i-1] == Y[j-1])
            {
                dp[i][j] = dp[i-1][j-1] + 1;
            }else if(dp[i][j-1] > dp[i-1][j])
            {
                dp[i][j] = dp[i][j-1];
            }else
            {
                dp[i][j] = dp[i-1][j];
            }
        }
    }
    printf("len of LCS is: %d\n", dp[xlen][ylen]);
 
    /* 输出LCS 本来是逆序打印的,可以写一递归函数完成正序打印
       这里采用的方法是将Y作为临时存储LCS的数组,最后输出Y
    */
    i = xlen;
    j = ylen;
    int k = dp[i][j];
    Y[k] = '\0';
    while(i && j)
    {
        if(dp[i][j] == dp[i-1][j-1] + 1)
        {
            Y[--k] = X[i-1];
            --i; --j;
        }else if(dp[i-1][j] > dp[i][j-1])
        {
            --i;
        }else
        {
            --j;
        }
    }
    printf("%s\n",Y);
}

在LCS问题中,如果仅仅要求求出LCS的长度,而不要求输出序列,那么由于每步迭代都只用到了前面的状态,之前的信息便无用了,我们就可以使用滚动数组了,代码如下:

#include <iostream>
using namespace std;
 
/* 滚动数组 */
 
int dp[2][21];  /* 存储LCS长度 */
char X[21];
char Y[21];
int i, j, k;
 
void main()
{
    cin.getline(X,20);
    cin.getline(Y,20);
 
    int xlen = strlen(X);
    int ylen = strlen(Y);
 
    for(i = 1; i <= xlen; ++i)
    {
        k = i & 1;
        for(j = 1; j <= ylen; ++j)
        {
            if(X[i-1] == Y[j-1])
            {
                dp[k][j] = dp[k^1][j-1] + 1;
            }else if(dp[k][j-1] > dp[k^1][j])
            {
                dp[k][j] = dp[k][j-1];
            }else
            {
                dp[k][j] = dp[k^1][j];
            }
        }
    }
    printf("len of LCS is: %d\n", dp[k][ylen]);
}

LCS在输出子序列时,忽略了测试条件,勘误如下

i = xlen;
j = ylen;
int k = dp[i][j];
char lcs[21] = {'\0'};
while(i && j)
{
    if(X[i-1] == Y[j-1] && dp[i][j] == dp[i-1][j-1] + 1)
    {
        lcs[--k] = X[i-1];
        --i; --j;
    }else if(X[i-1] != Y[j-1] && dp[i-1][j] > dp[i][j-1])
    {
        --i;
    }else
    {
        --j;
    }
}
printf("%s\n",lcs);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值