机器学习-线性回归与最小二乘
继续微笑lsj
眼界决定未来
展开
-
极大似然和最小平方误差等价关系
看了一下机器学习这一节,感觉有点乱,人生观乱了,原来如此。 我们设想一个问题如下:学习器工作在X的实例空间和假设空间H,我们现在的任务就是根据实例空间X,然后在H空间中学习出h满足:y = h(x)。现在我们给出了训练样集D,但是D含有随机噪声,但是此噪声服从高斯分布。即满足: 根据贝叶斯理论,我们可以利用先验概率去估计后验概率p(h|原创 2013-10-04 16:12:38 · 5813 阅读 · 0 评论 -
回归(regression)、梯度下降(gradient descent)
转:http://www.cnblogs.com/LeftNotEasy/archive/2010/12/05/mathmatic_in_machine_learning_1_regression_and_gradient_descent.html 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未转载 2013-09-30 16:07:54 · 1038 阅读 · 0 评论 -
一元线性回归模型与最小二乘法及其C++实现
原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或转载 2013-10-06 11:17:44 · 2222 阅读 · 0 评论 -
线性回归,偏差、方差权衡
转:http://www.cnblogs.com/LeftNotEasy/archive/2010/12/19/mathmatic_in_machine_learning_2_regression_and_bias_variance_trade_off.html版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs转载 2013-09-30 17:06:10 · 2375 阅读 · 4 评论