1、dfs.hosts 记录即将作为datanode加入集群的机器列表
2、mapred.hosts 记录即将作为tasktracker加入集群的机器列表
3、dfs.hosts.exclude mapred.hosts.exclude 分别包含待移除的机器列表
4、master 记录运行辅助namenode的机器列表
5、slave 记录运行datanode和tasktracker的机器列表
6、hadoop-env.sh 记录脚本要用的环境变量,以运行hadoop
7、core-site.xml hadoop core的配置项,例如hdfs和mapreduce常用的i/o设置等
8、hdfs-site.xml hadoop守护进程的配置项,包括namenode、辅助namenode和datanode等
9、mapred-site.xml mapreduce守护进程的配置项,包括jobtracker和tasktracker
10、hadoop-metrics.properties 控制metrics在hadoop上如何发布的属性
11、log4j.properties 系统日志文件、namenode审计日志、tasktracker子进程的任务日志的属性
namenode磁盘: sas带RAID,多磁盘存储文件系统元信息.
datanode配置: 不带RAID, 双网卡: 一个用于内部数据传输,一个用于外部数据传输.
hadoop各节点的分布:namenode和jobtracker部署:namenode与jobtracker分离.tasktracker与datanode配对.
Trash: hadoop回收站功能默认是禁止的,删除文件,就是直接删除了,所以要记得配置好trash。trash功能还是不错的,当rm后,它会move到当前文件夹下的.Trash目录下,误删文件后,可以到对应的.Trash目录下恢复文件,参考配置属性fs.trash.interval。
备份:namendoe的元数据切记做好多处备份,包括热备和冷备,否则元数据一丢,整个集群的数据都无法恢复了。热备:namenode的元数据配置写两份,一分写本地,另一份写远程nfs。冷备:定时拷贝namenode的元数据到远程的nfs,保留十天甚至更长。
Datanode的数据目录:如果datanode对应的机器上有多块磁盘,例如/disk1-/disk3,dfs.data.dir可以配置为”/disk1/data,/disk2/data,/disk3/data”,datanode会在写数据时,以轮询的方式选择一个目录写入数据,一般这些目录是不同的块设备,不存在的目录会被忽略掉,参考配置属性dfs.data.dir.datanode如果有多个磁盘不建议做raid,因为做raid会有性能损失,还会导致一个磁盘坏了,整个硬盘也不能用了,而hadoop可以规避这个问题。
Tasktracker的中间输出目录: MapReduce产生的中间数据会特别多,为了减少磁盘压力,如果机器有多个磁盘,也可以像datanode的数据目录设为”/disk1/local,/disk2/local,/disk3/local”,参考配置属性mapred.local.dir。
map和reduce任务的JVM选项:mapred.child.java.opts配置map和reduce子进程的JVM属性,如果内存充裕,可以改为 -Xmx2400m.
Tasktracker的map和reducer数量配置: 属性mapred.tasktracker.map.tasks.maximum配置这个tasktracker同时可以最多跑多少个map task,要根据tracker的内存和磁盘情况规划。还有属性mapred.tasktracker.reduce.tasks.maximum配置这个tasktracker同时可以最多跑多少个reduce task.同理也是要根据tracker的内存和磁盘情况规划。例如8核的机器,8个map和8个reducer。map中间结果开启压缩操作(尤其是snappy和LZO)的时候,cpu的负载会比较高,map和reducer的数量可以根据自己的业务情况灵活调节。
缓冲区大小:io.file.buffer.size默认是4KB,作为hadoop缓冲区,用于hadoop读hdfs的文件和写hdfs的文件,还有map的输出都用到了这个缓冲区容量,对于现在的硬件很保守,可以设置为128k(131072),甚至是1M(太大了map和reduce任务可能会内存溢出)。
noatime的设置:为了充分发挥性能,需要使用noatime选项挂载磁盘,表示执行读操作时,不更新文件的访问时间,可以显著提供性能。
CRC32 Intrinsic加速CRC校验:参考http://rdc.taobao.com/blog/cs/?p=1220