Leetcode 33, 81 Search in Rotated Sorted Array I, II

本文介绍了一种在旋转数组中进行二分查找的算法实现,包括两种不同的搜索方法:一种返回目标元素的位置,另一种返回布尔值指示是否存在。针对旋转数组的特点,通过调整搜索范围解决了元素重复带来的挑战。
</pre><pre code_snippet_id="1772246" snippet_file_name="blog_20160720_2_2733242" name="code" class="java">    public int search(int [] A,int target){
       if(A==null||A.length==0)
         return -1;
        
       int low = 0;
       int high = A.length-1;
       while(low <= high){
           int mid = (low + high)/2;
           if(target < A[mid]){
               if(target < A[low] && A[mid] > A[high]){//spinned
                 low = mid + 1;
               }else{
                 high = mid - 1;//normal case
               }
           }else if(target > A[mid]){
                 if(target>A[high] && A[low] > A[mid]){
                    high = mid - 1;
                 }else{
                    low = mid + 1;
                 }
           }else{
             return mid;
           }
       }
       return -1;
    }


based on http://www.cnblogs.com/springfor/p/3858140.html


81, 

	public boolean search(int[] A, int target) {
		if (A == null || A.length == 0)
			return false;

		int low = 0;
		int high = A.length - 1;

		while (low <= high) {
			int mid = (low + high) / 2;
			if (target < A[mid]) {
			    if(A[mid] == A[high]){
			        high--;
			    }else if (target < A[low] && A[high] < A[mid]) {
					low = mid + 1;
				}else {
					high = mid - 1;
				}
			} else if (target > A[mid]) {
				if (A[low] == A[mid]){
				    low++;
				}else if (target > A[high] && A[low] > A[mid]){
					high = mid - 1;
				}else{
				    low = mid + 1;
				}
			} else{
				return true;
			}
		}

		return false;
	}






内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值