【CVPR 2023】Rethinking the Learning Paradigm for Dynamic Facial Expression Recognition——CCF A 视觉权威会议

文章提出了动态面部表情识别的新框架M3DFEL,利用多实例学习处理不精确标签,通过3D实例建模短期关系,并用3DCNN提取特征。DLIAM模块则学习长期时间关系。实验显示M3DFEL在DFEW和FERV39K数据集上超越现有最佳方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Rethinking the Learning Paradigm for Dynamic Facial Expression Recognition
重新思考动态面部表情识别的学习范式
(可计算情感系列国际顶级成果)

Abstract
Dynamic Facial Expression Recognition (DFER) is a rapidly developing field that focuses on recognizing facial expressions in video format. Previous research has considered non-target frames as noisy frames, but we propose that it should be treated as a weakly supervised problem. We also identify the imbalance of short- and long-term temporal relationships in DFER. Therefore, we introduce the Multi-3D Dynamic Facial Expression Learning (M3DFEL) framework, which utilizes Multi-Instance Learning (MIL) to handle inexact labels. M3DFEL generates 3D-instances to model the strong short-term temporal relationship and utilizes 3DCNNs for feature extraction. The Dynamic Long-term Instance Aggregation Module (DLIAM) is then utilized to learn the long-term temporal relationships and dynamically aggregate the instances. Our experiments on DFEW and FERV39K datasets show that M3DFEL outperforms existing state-of-the-art approaches with a vanilla R3D18 backbone. The source code is available at https://github.com/faceeyes/M3DFEL.

中文摘要
动态面部表情识别(DFER)是一个快速发展的领域,主要是识别视频格式的面部表情。以前的研究将非目标帧视为噪声帧,但我们提出应将其视为一个弱监督问题。我们还发现DFER中短期和长期时间关系的不平衡。因此,我们引入了多三维动态面部表情学习(M3DFEL)框架,它利用多实例学习(MIL)来处理不确切的标签。M3DFEL生成三维实例来模拟强大的短期时间关系,并利用3DCNNs进行特征提取。然后利用动态长期实例聚合模块(DLIAM)来学习长期的时间关系,并动态地聚合实例。我们在DFEW和FERV39K数据集上的实验表明,M3DFEL优于现有的以vanilla R3D18为骨干的先进方法。源代码可在https://github.com/faceeyes/M3DFEL。

查看原文

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乐扣老师lekkoliu

你的鼓励是我最大的科研动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值