【动态规划】---线性dp和区间dp

一:关于线性dp--------在线性空间上的递推

1.数字三角形问题:

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5

输入格式

第一行包含整数 n,表示数字三角形的层数。

接下来 n 行,每行包含若干整数,其中第 i 行表示数字三角形第 ii 层包含的整数。

输出格式

输出一个整数,表示最大的路径数字和。

数据范围

1≤n≤500,
−10000≤三角形中的整数≤10000

输入样例:

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

输出样例:

30

解题思路:

(1).状态表示:首先定义一个二维数组用它来表示所有从起点出发,走到点(i,j)的路径的最大值。

(2).状态计算:将f[i][j]所表示的集合分为2个子集,分别表示从左边来到点(i,j)的路径和从右边来到点(i,  j)的路径,由上图可以清楚地发现这2个子集可以分别表示为 f [i - 1][j - 1]+a[i , j]和f [i - 1][ j ]+a[i ][j ]。然后枚举最后一行,最后取max即可。其代码如下:

#include<bits/stdc++.h>
using namespace std;
int n;
int a[510][510];
int f[510][510];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
			cin>>a[i][j];
	for(int i=0;i<=n;i++)
		for(int j=0;j<=i+1;j++)
			f[i][j]=-1e9;
	f[1][1]=a[1][1];
	for(int i=2;i<=n;i++)
		for(int j=1;j<=i;j++)
			f[i][j]=max(f[i-1][j-1]+a[i][j],f[i-1][j]+a[i][j]);
	int res=-1e9;
	for(int i=1;i<=n;i++) res=max(res,f[n][i]);
	cout<<res<<endl;
	return 0;				
}

2.最长上升子序列问题

给定一个长度为 N 的数列,求数值严格单调递增的子序列的长度最长是多少。

输入格式

第一行包含整数 N。

第二行包含 N 个整数,表示完整序列。

输出格式

输出一个整数,表示最大长度。

数据范围

1≤N≤1000,
−10^9≤数列中的数≤10^9

输入样例:

7
3 1 2 1 8 5 6

输出样例:

4

        解题思路:总体来说用递归更容易理解一点

(1)状态表示:定义一个一维数组f[i],用它来表示所有以第 i个数结尾的上升子序列;

(2)状态计算:将f[i]这个集合分成若干份,每一份表示以第i个数来结尾的数是哪个数,采用间接求解的的思想,求f[i]时就已知f[i-1]的值了,所以我们只需要f[i-1]+1就可以得到f[i]的值了。其代码如下:

#include <bits/stdc++.h>
#include <iostream>
using namespace std;
const int N=1010;
int n;
int f[N],a[N];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)  cin>>a[i];
    for(int i=1;i<=n;i++)
    {
        f[i]=1;
        for(int j=1;j<i;j++)
            if(a[j]<a[i])
                f[i]=max(f[i],f[j]+1);
    }
    int res=0;
    for(int i=1;i<=n;i++)  res=max(res,f[i]);
    cout<<res;
    return 0;
}

二:区间dp---区间dp就是在区间上进行动态规划,求解一段区间上的最优解。主要是通过合并小区间的 最优解进而得出整个大区间上最优解的dp算法。

其核心思路为:

既然让我求解在一个区间上的最优解,那么我把这个区间分割成一个个小区间,求解每个小区间的最优解,再合并小区间得到大区间即可。所以在代码实现上,我可以枚举区间长度len为每次分割成的小区间长度(由短到长不断合并),内层枚举该长度下可以的起点,自然终点也就明了了。然后在这个起点终点之间枚举分割点,求解这段小区间在某个分割点下的最优解。

1.石子合并问题

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为4+9+11=24;

如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数 N 表示石子的堆数 N。

第二行 N 个数,表示每堆石子的质量(均不超过 1000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤300

输入样例:

4
1 3 5 2

输出样例:

22

        解题思路:

这道题总体比较简单,懒了懒了,其思维导图如下图所示:(~ 。~)

不难发现我们最终的答案为f[1][n],即从第i堆到第n 堆合并在一起的代价的最小值。

 嘿嘿,可以看看代码:

#include<bits/stdc++.h>
using namespace std;
const int N=310;
int n;
int s[N];
int f[N][N];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)  cin>>s[i];
    
    for(int i=1;i<=n;i++)  s[i]=s[i-1]+s[i];//求前缀和
    
    for(int changdu=2;changdu<=n;changdu++)//(1)
    {
        for(int i=1;i+changdu-1<=n;i++)//(2)  通过(1)(2)可以确定一段区间(i,j)
        {
            int l=i,r=i+changdu-1;//l表示左端点,r表示右端点
            f[l][r]=1e8;
            for(int k=l;k<r;k++)
                f[i][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
        }
    }
    cout<<f[1][n]<<endl;
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值