每日一题
题目说明
33.搜索旋转排序数组
整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
示例 1:
输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0
输出:-1
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/search-in-rotated-sorted-array/solution/sou-suo-xuan-zhuan-pai-xu-shu-zu-by-leetcode-solut/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
算法思路
二分查找:
这题目说的花里胡哨一大堆,其实就是想让你在数组中找到目标值,然后返回下标。
最简单的方法就是从头遍历一遍查找一下就结束了。
但是题目写的这么复杂就是想让你使用二分查找。
虽然题目所给的数组不是有序的,但是是旋转排序的,那就说明数组算是间接有序。
间接有序依旧可以使用二分查找。
代码如下:
代码实现
class Solution
{
public:
int search(vector<int>& nums, int target)
{
int n = nums.size();
if ( !n )
{
return -1;
}
if (n == 1)
{
return nums[0] == target ? 0 : -1;
}
int left = 0;
int right = n - 1;
while (left <= right)
{
int mid = (left + right) / 2;
if (nums[mid] == target)
{
return mid;
}
if (nums[0] <= nums[mid])
{
if (nums[0] <= target && target < nums[mid])
{
right = mid - 1;
}
else
{
left = mid + 1;
}
}
else
{
if (nums[mid] < target && target <= nums[n - 1])
{
left = mid + 1;
}
else
{
right = mid - 1;
}
}
}
return -1;
}
};
复杂度分析
- 时间复杂度: O(logn),其中 n 为 nums 数组的大小。整个算法时间复杂度即为二分查找的时间复杂度 O(logn)。
- 空间复杂度: O(1) 。我们只需要常数级别的空间存放变量。