卷积神经网络的基本结构

  1. 卷积层   卷积层是一个特征提取器,能够提取图像的表达特征。经过卷积层操作得到的表达特征称为特征图。特征图中特征的提取受前一层特征图中局部感受野影响。一个特征图中的特征由一个卷积核计算得到,不同特征图由不同卷积核计算得到。
  2. 整流线性单元(ReLU)   它是卷积神经网络中一个重要的结构单元,对神经元有着激活的作业。
  3. 池化层 是一个特征压缩器,对上一层的特征进行压缩并尽可能减少图像的失真率,通过压缩特征使神经网络更具图像平移的不变形。
  4. 全连接层 卷积层和池化层的交替堆叠组成了一个简单的卷积神经网络,这样的神经网络可以提取到输入图像的抽象特征。为了将网络更好的应用到实践中,通常在这之后添加全连接层。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机刘老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值