一、数组
1. 概述
定义:在计算机科学中,数组是由一组元素(值或变量)组成的数据结构,每个元素有至少一个索引或键来标识。
因为数组内的元素是连续存储的,所以数组中元素的地址,可以通过其索引计算出来,例如:
int[] array = {1,2,3,4,5}
知道了数组的数据起始地址BaseAddress,就可以由公式BaseAddress + i * size来计算索引i元素的地址
- i即索引,在Java、C等语言都是从0开始
- size是每个元素占用字节,了例如int占4,double占8
空间占用
Java中数组结构为
- 8字节markword,记录对象的锁状态、对象实例的哈希值、年龄信息、GC状态
- 4字节class指针(压缩class指针的情况)
- 4字节数组大小(决定了数组最大容量是2^32
- 数组元素 + 对齐字节(Java中所有对象大小都是8字节的整数倍,不足的要用对齐字节补足)
例如
int[] array = {1, 2, 3, 4, 5};
的大小为40字节,组成如下
8 + 4 + 4 + 5*4 + 4(alignment)
随机访问性能
即根据索引查找元素,时间复杂度是O(1)。
2. 动态数组
Java示例
import java.util.Arrays;
import java.util.Iterator;
import java.util.function.Consumer;
import java.util.stream.IntStream;
public class DynamicArray implements Iterable<Integer> {
private int size = 0; // 逻辑大小
private int capacity = 8; // 容量
private int[] array = {};
/**
* 向最后位置[size]添加元素
*
* @param element 待添加元素
*/
public void addLast(int element) {
add(size, element);
}
/**
* 向[0 ... size]位置添加元素
*
* @param index 索引位置
* @param element 待添加元素
*/
private void add(int index, int element) {
if (index < 0 || index > size) {
throw new RuntimeException("索引越界");
}
// 扩容
checkAndGrow();
// 添加逻辑
if (index < size) {
// 向后挪动,空出待插入位置
System.arraycopy(array, index, array, index + 1, size - index);
}
array[index] = element;
size++;
}
/**
* 数组容量扩容
*/
private void checkAndGrow() {
// 容量检查
if (size == 0) {
array = new int[capacity];
} else if (size == capacity) {
// 进行扩容 1.5 1.618 2
capacity += capacity >> 1;
int[] newArray = new int[capacity];
System.arraycopy(array, 0, newArray, 0, size);
array = newArray;
}
}
/***
* 从[0 ... size)范围删除元素
* @param index 索引位置
* @return 被删除元素
*/
public int remove(int index) {
int removed = array[index];
if (index < size - 1) {
System.arraycopy(array, index + 1, array, index, size - index - 1);
}
size--;
return removed;
}
/**
* 查询元素
*
* @param index
* @return
*/
public int get(int index) {
if (index < 0 || index >= size) {
throw new RuntimeException("索引越界");
}
return array[index];
}
/**
* 遍历方法1
*
* @param consumer 遍历要执行的操作,入参:每个元素
*/
public void foreach(Consumer<Integer> consumer) {
for (int i = 0; i < size; i++) {
// 提供array[i]
// 返回void
consumer.accept(array[i]);
}
}
/**
* 遍历方法2, 迭代器遍历
*
* @return
*/
@Override
public Iterator<Integer> iterator() {
return new Iterator<Integer>() {
int i = 0;
@Override
public boolean hasNext() { // 有没有下一个元素
return i < size;
}
@Override
public Integer next() { // 返回当前元素并移动到下一个元素
return array[i++];
}
};
}
/**
* 遍历方法3 - stream遍历
*
* @return stream流
*/
public IntStream stream() {
return IntStream.of(Arrays.copyOfRange(array, 0, size));
}
public static void main(String[] args) {
DynamicArray dynamicArray = new DynamicArray();
dynamicArray.addLast(1);
dynamicArray.addLast(2);
dynamicArray.addLast(3);
dynamicArray.addLast(4);
dynamicArray.addLast(5);
dynamicArray.add(5, 6);
// System.out.println(dynamicArray.get(4));
/*dynamicArray.foreach((element) -> {
System.out.println(element);
});*/
/*for (Integer element : dynamicArray) {
// hasNext() next()
System.out.println(element);
}*/
// dynamicArray.stream().forEach(System.out::println);
// System.out.println(dynamicArray.remove(2));
// System.out.println(dynamicArray.size);
}
}
这些方法实现,都简化了index的有效性判断,假设输入的index都是合法的。
插入或删除性能
- 头部位置,时间复杂度是O(n)
- 中间位置,时间复杂度是O(n)
- 尾部位置,时间复杂度是O(1)
注:函数式接口
函数式接口(Functional Interface)是Java 8中引入的一个新概念。它是一个只有一个抽象方法的接口。这意味着,这个接口中只能有一个需要实现的方法。
在Java 8之前,我们通常会使用匿名内部类来实现接口。但是,这种方式比较繁琐,代码也比较冗长。而使用函数式接口,我们可以使用Lambda表达式或方法引用来简化代码。
例如,我们定义一个函数式接口:
@FunctionalInterface
public interface MyFunctionalInterface {
int doSomething(int x, int y);
}
在这个接口中,只有一个抽象方法`doSomething(int x, int y)`。我们可以使用Lambda表达式来实现这个接口:
MyFunctionalInterface myInterface = (x, y) -> x + y;
int result = myInterface.doSomething(2, 3); // result = 5
或者使用方法引用:
MyFunctionalInterface myInterface = Integer::sum;
int result = myInterface.doSomething(2, 3); // result = 5
这样,我们就可以更简洁地实现接口,而无需创建匿名内部类。
函数式接口有以下特点:
1. 只有一个抽象方法。
2. 可以有默认方法和静态方法。
3. 可以使用`@FunctionalInterface`注解来标注。
使用函数式接口可以让我们的代码更加简洁和易读,同时也支持了Java 8中的新特性,如Lambda表达式和方法引用。
3. 二维数组
int[][] array = {
{11, 12, 13, 14, 15},
{21, 22, 23, 24, 25},
{31, 32, 33, 34, 35},
};
内存图如下:
二维数组占32个字节,其中array[0],array[1],array[2]三个元素分别保存了指向三个一维数组的引用
- 三个一维数组各占40个字节
- 它们在内层布局上是连续的
更一般的,对一个二维数组Array[m][n]
- m是外层数组的长度,可以看作row行
- n是内层数组的长度,可以看作column列
当访问Array[i][j]时,就相当于
- 先找到第i个内层数组(行)
- 再找到此内存数组中第j个元素(列)
小测试
Java环境下(不考虑类指针和引用压缩,此为默认情况),有下面的二维数组
byte[][] array = {
{11, 12, 13, 14, 15},
{21, 22, 23, 24, 25},
{31, 32, 33, 34, 35},
};
已知array对象起始地址是0x1000,那么23这个元素的地址是什么?
答:
-
起始地址 0x1000
-
外层数组大小:16字节对象头 + 3元素 * 每个引用4字节 + 4 对齐字节 = 32 = 0x20
-
第一个内层数组大小:16字节对象头 + 5元素 * 每个byte1字节 + 3 对齐字节 = 24 = 0x18
-
第二个内层数组,16字节对象头 = 0x10,待查找元素索引为 2
-
最后结果 = 0x1000 + 0x20 + 0x18 + 0x10 + 2*1 = 0x104a
4. 局部性原理
这里只讨论空间局部性
- cpu读取内存(速度慢)数据后,会将其放入高速缓存(速度快)当中,如果后来的计算再用到此数据,存缓存中能读到的话,就不必读内存了
- 缓存的最小存储单位是缓存行(cache line),一般是64bytes,一次读的数据少了不划算,因此最少读64bytes填满一个缓存行,因此读入某个数据时,也会读取其临近的数据,这就是空间局部性。
对效率的影响
比较下面 ij 和 ji两个方法的执行效率
int rows = 1000000;
int columns = 14;
int[][] a = new int[rows][columns];
StopWatch sw = new StopWatch();
sw.start("ij");
ij(a, rows, columns);
sw.stop();
sw.start("ji");
ji(a, rows, columns);
sw.stop();
System.out.println(sw.prettyPrint());
ij方法
public static void ij(int[][] a, int rows, int columns) {
long sum = 0L;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
sum += a[i][j];
}
}
System.out.println(sum);
}
ji方法
public static void ji(int[][] a, int rows, int columns) {
long sum = 0L;
for (int j = 0; j < columns; j++) {
for (int i = 0; i < rows; i++) {
sum += a[i][j];
}
}
System.out.println(sum);
}
执行结果
0
0
StopWatch '': running time = 96283300 ns
---------------------------------------------
ns % Task name
---------------------------------------------
016196200 017% ij
080087100 083% ji
可以看到 ij 的效率比 ji快很多,为什么呢?
- 缓存是有限的,当新数据来了之后,一些旧的缓存行数据就会被覆盖
- 如果不能充分利用缓存的数据,就会造成效率低下
以 ji 执行为例,第一次内循环要读入[0, 0]这条数据,由于局部性原理,读入[0, 0]的同时也读入了[0, 0] ... [0, 13],如图所示
但很遗憾,第二次内循环要的是[1, 0]这条数据,缓存中没有,于是再读入了下图的数据
这显然是一种浪费,因为[0, 1] ... [0, 13],包括[1, 1] ... [1, 13]这些数据虽然读入了缓存,却没有及时用上,而缓存的大小是有限的,等执行到第九次内循环时
缓存的第一行数据已经被新的数据[8, 0] ... [8, 13]覆盖掉了,以后如果想再读,比如[0, 1],又得到内存去读了。同理可以分析ij函数则能充分利用局部性原理加载到的缓存数据。
举一反三
1. I/O读写时同样可以体现局部性原理
2. 数组可以充分利用局部性原理,那么链表呢?
答:链表不行,因为链表的元素并非相邻存储
5. 越界检查
java中对数组元素的读写都有越界检查,类似于下面的代码
bool is_within_bounds(int index) const
{
return 0 <= index && index < length();
}
此检查代码不需要由程序员来调用,JVM会帮我们调用
6. 习题
6.1 合并两个有序数组
给你两个按 非递减顺序 排列的整数数组 nums1
和 nums2
,另有两个整数 m
和 n
,分别表示 nums1
和 nums2
中的元素数目。
请你 合并 nums2
到 nums1
中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1
中。为了应对这种情况,nums1
的初始长度为 m + n
,其中前 m
个元素表示应合并的元素,后 n
个元素为 0
,应忽略。nums2
的长度为 n
。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6] 解释:需要合并 [1,2,3] 和 [2,5,6] 。 合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1] 解释:需要合并 [1] 和 [] 。 合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1 输出:[1] 解释:需要合并的数组是 [] 和 [1] 。 合并结果是 [1] 。 注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-10^9 <= nums1[i], nums2[j] <= 10^9
进阶:你可以设计实现一个时间复杂度为 O(m + n)
的算法解决此问题吗?
解法一:使用双指针法从后向前填充 nums1
,避免了覆盖尚未比较的元素
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int i = m + n - 1;
m--;
n--;
while(n >= 0) {
if(m >= 0 && nums1[m] > nums2[n]) {
nums1[i--] = nums1[m--];
} else {
nums1[i--] = nums2[n--];
}
}
}
}
6.2 合并数组的两个有序区间
原题修改
解法一:迭代
package com.itheima.algorithms.datastructure;
public class MergeArray {
public static void main(String[] args) {
int[] a1 = {1, 5, 6, 2, 4, 6, 10, 11};
int[] a2 = new int[a1.length];
merge(a1, 0, 2, 3, a1.length - 1, a2);
for (int i : a2) {
System.out.print(i + " ");
}
}
/**
* 合并两个有序区间
* @param a 原始数组
* @param i 第一个有序区间的起点
* @param iEnd 第一个有序区间的终点
* @param j 第二个有序区间的起点
* @param jEnd 第二个有序区间的终点
* @param a2 结果数组
*/
public static void merge(int[] a, int i, int iEnd, int j, int jEnd, int[] a2) {
int k = i;
while(i <= iEnd && j < jEnd) {
if(a[i] < a[j]) {
a2[k] = a[i];
i++;
} else {
a2[k] = a[j];
j++;
}
k++;
}
if(i > iEnd) { // 第一个区间已经没有元素
System.arraycopy(a, j, a2, k, jEnd - j + 1);
}
if(j > jEnd) { // 第二个区间已经没有元素
// src srcPos dest destPos length
System.arraycopy(a, i, a2, k, iEnd - i + 1);
}
}
}
解法二:递归
package com.itheima.algorithms.datastructure;
public class MergeArray {
public static void main(String[] args) {
int[] a1 = {1, 5, 6, 2, 4, 10, 11};
int[] a2 = new int[a1.length];
merge(a1, 0, 2, 3, a1.length - 1, a2, 0);
for (int i : a2) {
System.out.print(i + " ");
}
}
/**
* 合并两个有序区间
* @param a 原始数组
* @param i 第一个有序区间的起点
* @param iEnd 第一个有序区间的终点
* @param j 第二个有序区间的起点
* @param jEnd 第二个有序区间的终点
* @param a2 结果数组
*/
public static void merge(int[] a, int i, int iEnd, int j, int jEnd, int[] a2) {
int k = i;
while(i <= iEnd && j < jEnd) {
if(a[i] < a[j]) {
a2[k] = a[i];
i++;
} else {
a2[k] = a[j];
j++;
}
k++;
}
if(i > iEnd) { // 第一个区间已经没有元素
System.arraycopy(a, j, a2, k, jEnd - j + 1);
}
if(j > jEnd) { // 第二个区间已经没有元素
// src srcPos dest destPos length
System.arraycopy(a, i, a2, k, iEnd - i + 1);
}
}
public static void merge(int[] a, int i, int iEnd, int j, int jEnd, int[] a2, int k) {
if(i > iEnd) { // 有序区1已空
System.arraycopy(a, j, a2, k, jEnd -j + 1);
return;
}
if(j > jEnd) { // 有序区2已空
System.arraycopy(a, i, a2, k, iEnd - i + 1);
return;
}
if(a[i] < a[j]) {
a2[k] = a[i];
merge(a, i + 1, iEnd, j, jEnd, a2, k + 1);
} else {
a2[k] = a[j];
merge(a, i, iEnd, j + 1, jEnd, a2, k + 1);
}
}
}