poj 1741 点分治论文题

题意:

给你一棵树, 让你求这棵树上满足dis(u, v) <= k的点对有多少个。

分析:

首先, 对于直接想到的办法。lca预处理然后暴力,复杂度n^2,显然复杂度太大。 那么我们就有了树上分治的思想;

首先, 对于这个问题, 我们可以看出只有如下三种情况:
这里写图片描述
这里写图片描述
这里写图片描述

然后分治处理。

这里要注意,分治的时候要求重心, 因为重心可以保证logn的复杂度。不然会被链卡住。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <string>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 10010;
int n,k;
int size[maxn];
bool vis[maxn];
struct node{
    int to,next,w;
}edge[maxn*2];
int tot,head[maxn];
void init(){
    tot = 0; memset(head, -1, sizeof(head));
}
void add_edge(int u, int v, int w){
    edge[tot].to = v; edge[tot].w = w;
    edge[tot].next = head[u]; head[u] = tot++;
}
int getsize(int u, int pre){
    size[u] = 1;
    for(int i=head[u]; ~i; i=edge[i].next){
        int v = edge[i].to;
        if(v == pre || vis[v])continue;
        size[u] += getsize(v, u); 
    }
    return size[u];
}
int minn;
void getroot(int u, int pre, int totnum, int &root){
    int maxx = totnum - size[u];
    for(int i=head[u]; ~i; i=edge[i].next){
        int v = edge[i].to;
        if(pre == v || vis[v] ) continue;
        getroot(v, u, totnum, root);
        maxx = max(maxx, size[v]);
    }
    if(maxx < minn){minn = maxx, root = u;}
}
int dep[maxn];
int st,ed;
void getdepth(int u, int pre, int d){
    dep[st++] = d;
    for(int i=head[u]; ~i; i=edge[i].next){
        int v = edge[i].to;
        if(v == pre||vis[v]) continue;
        getdepth(v, u, d+edge[i].w);
    }
}
int getdep(int a, int b){
    sort(dep+a, dep+b);
    int ret = 0, e = b-1;
    for(int i=a; i<b; i++){
        if(dep[i] > k) break;
        while( e >= a && dep[e] + dep[i] > k) e--;
        ret += e - a + 1;
        if( e >= i) ret--; 
    }
    return ret>>1;
}
int solve(int u){
   int totnum = getsize(u, -1);
   int root, ret = 0;
   minn = INF;
   getroot(u, -1, totnum, root);
   vis[root] = true;
   for(int i=head[root]; ~i; i=edge[i].next){
        int v = edge[i].to;
        if(vis[v]) continue;
        ret += solve(v);
   }
   st = ed = 0;
   for(int i=head[root]; ~i; i=edge[i].next){
       int v = edge[i].to;
       if(vis[v]) continue;
       getdepth(v, root, edge[i].w);
       ret -= getdep(ed, st);
       ed = st;
   }
   ret += getdep(0, ed);
   for(int i=0; i<ed; i++){
       if(dep[i] <= k) ret++;
       else break;
   }
   vis[root] = false;
   return ret;
}
int main(){
    int u,v,w;
    while(scanf("%d %d", &n, &k) != EOF&& n+k){
        init();
        for(int i=1; i<n; i++){
            scanf("%d %d %d", &u, &v, &w);
            add_edge(u, v, w);
            add_edge(v, u, w);
        }
        memset(vis, false, sizeof(vis));
        printf("%d\n", solve(1));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值