#4.寻找两个有序数组的中位数-------困难

链接地址:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/

题目:

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。

请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0
示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

  这道题一开始的想法是不借助jdk的方法,用二分查找纯撸出来。具体思路是:中位数的位置是在(num1.length+num2.length)/2附近。通过二分插入的方式,将一个数组的length填满至大于(num1.length+num2.length)/2。这里的排序只进行了中位数的前半部分。最后在取出中位数。
  但是后来一想java里的数组排序是基于双轴快排的方式(其实是我懒orz)。最后还是调用jdk(美滋滋~)。
  ps.代码里的时间复杂度是O(nlogn)。

代码:

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int[] a=new int[nums1.length+nums2.length];
        int sum=nums1.length+nums2.length;

        double mid=0.0d;
        for(int i=0;i<nums1.length;i++) {
            a[i]=nums1[i];
        }
        for(int i=0;i<nums2.length;i++) {
            a[nums1.length+i]=nums2[i];
        }
        Arrays.sort(a);

        mid=sum%2==1?(double)a[sum/2]:(a[sum/2-1]+a[sum/2])/2.0f;
        return mid;
    }
}

前方高能~

官方答案:

官方答案中的解释很长,具体总结就是将两个数组合并然后分成两部分,但要寻找临界条件,也就中位数成立调解。
1.len(left_part)=len(right_part)
2.max(left_part)≤min(right_part)

class Solution {
    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        if (m > n) { // to ensure m<=n
            int[] temp = A; A = B; B = temp;
            int tmp = m; m = n; n = tmp;
        }
        int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = halfLen - i;
            if (i < iMax && B[j-1] > A[i]){
                iMin = i + 1; // i is too small
            }
            else if (i > iMin && A[i-1] > B[j]) {
                iMax = i - 1; // i is too big
            }
            else { // i is perfect
                int maxLeft = 0;
                if (i == 0) { maxLeft = B[j-1]; }
                else if (j == 0) { maxLeft = A[i-1]; }
                else { maxLeft = Math.max(A[i-1], B[j-1]); }
                if ( (m + n) % 2 == 1 ) { return maxLeft; }

                int minRight = 0;
                if (i == m) { minRight = B[j]; }
                else if (j == n) { minRight = A[i]; }
                else { minRight = Math.min(B[j], A[i]); }

                return (maxLeft + minRight) / 2.0;
            }
        }
        return 0.0;
    }
}

复杂度分析

  时间复杂度:O(log(min(m,n)))。首先,查找的区间是 [0, m]。 而该区间的长度在每次循环之后都会减少为原来的一半。 所以,我们只需要执行 log(m) 次循环。由于我们在每次循环中进行常量次数的操作,所以时间复杂度为 O(log(m))。 由于 m≤n,所以时间复杂度是 O(log(min(m,n)))。
  空间复杂度:O(1), 我们只需要恒定的内存来存储 99 个局部变量, 所以空间复杂度为O(1)。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值