1.Question:
t个测试用例
先输入模板串
后输入母串
求母串中有多少个子串
2.Solution:
标准的KMP算法模板
我们只需要进行小一点的改动就可以了
首先,我们现在来复习一下next数组的作用
next数组作为一个跳转表,在我们适配的时候,next数组直接可以将模式串的位置重新定位
但是在本题中有一点小小的改动在于
eg:
aza
azazazazaza
这样的用例中,很显然,我们的模式串要小心在一次匹配成功之后,不能直接让i调到匹配成功的下一个位置去,那样会造成遗漏
我们也不能一次匹配成功之后,就果断的让i重新回溯之前的状态的下一个去避免遗漏,因为这样的话,我们KMP所避免的回溯问题就又出来了
那我们该怎么解决这个问题呢?
我们可以这么来考虑:
当 j=patternlength 的时候,显然,我们已经按成了一次匹配
我们先计数
然后,我们令 j=next[j]
这样做的目的是,我们假设最后一个字母没有匹配成功,然后重新进行匹配操作
3.Code:
#include"iostream"
#include"cstdio"
#include"cstring"
#include"cstdlib"
#define N 10005
using namespace std;
char data[N*100];
char pattern[N];
int nextp[N];
void getnext()
{
int k=-1;
int j=0;
nextp[0]=-1;
int len=strlen(pattern);
while(j<len)
{
if(k==-1||pattern[j]==pattern[k])
{
k++;
j++;
if(pattern[j]!=pattern[k]) nextp[j]=k;
else nextp[j]=nextp[k];
}
else k=nextp[k];
}
}
int count()
{
int sum=0;
int i=0;
int j=0;
int dl=strlen(data);
int pl=strlen(pattern);
while(i<dl)
{
if(j==-1||data[i]==pattern[j]) i++,j++;
else j=nextp[j];
if(j==pl)
{
sum++;
j=nextp[j];
}
}
return sum;
}
int main()
{
int t;
scanf("%d",&t);getchar();
while(t--)
{
memset(nextp,0,sizeof(nextp));
memset(data,0,sizeof(data));
memset(pattern,0,sizeof(pattern));
gets(pattern);
gets(data);
getnext();
cout<<count()<<endl;
}
return 0;
}