插入查找的原理
- 插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找。
- 将折半查找中的求mid索引的公式,low表示左边索引left,high表示右边索引right. key 就是前面我们讲的 findVal(二分查找)。
3. int mid=low+(high-low)* (key-arr[low])/(arr[high]-arr[low]);/* 插值索引* /
对应前面的代码公式:
int mid =left+(right-left)* (findVal-arr[left])/(arr[right]-arr[left])
插值查找的注意事项
- 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找,速度较快 。
- 关键字分布不均匀的情况下,该方法不一定比折半查找要好。
代码实现
package com.search;
import java.util.Arrays;
public class InsertValueSearch {
public static void main(String[] args) {
int[] arr = new int[100];
for (int i = 0; i < 100; i++) {
arr[i] = i + 1;
}
int index = insertValueSearch(arr, 0, arr.length - 1, 10);
System.out.println("数组下标=" + index + "对应的数组值为" + arr[index]);
// System.out.println(Arrays.toString(arr));
}
// 编写插值查找算法
// 插值查找算法也要求数组是有序的。
/**
*
* @param arr
* 数组
* @param left
* 左边索引
* @param right
* 右边索引
* @param findVal
* 查找值
* @return 找到返回对应下标
*/
public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
System.out.println("查找次数");
// 注意:findVal < arr[0] 和 findVal > arr[arr.length - 1]必须需要,否则有可能越界
if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
return -1;
}
// 求出mid,自适应
int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
int midVal = arr[mid];
if (findVal > midVal) {// 向右边递归
return insertValueSearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) {// 向左边递归
return insertValueSearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
}