一.模块介绍
1.什么是模块
模块就是一系列功能的集合体
2.模块的来源
1).内置的模块
2).第三方的模块
3).自定义模块
3.模块的类别
1).使用python编写的.py文件
2).已被编译为共享库或DLL的C或C++扩展
3).把一系列模块组织到一起的文件夹(注:文件夹下有一个__init__.py文件,该文件夹称之为包
4).使用C编写并链接到python解释器的内置模块
4.为何要用模块
1).使用内置的或者第三方模块的好处是:拿来主义,可以极大提升开发效率
2).使用自定义模块的好处是:可以减少代码冗余(抽取我们自己程序中要公用的一些功能定义成模块,然后程序的各部分组件 都去模块中调用共享的功能
5.如何用模块
大前提:一定要区分开谁是执行文件,谁是被导入模块
二.使用模块之import
1.import的使用
文件名是spam.py,模块名则是spam
首次导入import spam 模块发生3件事
1).会产生一个模块的名称空间
2).执行文件spam.py,将执行过程中产生的名字都放到模块的名称空间中
3).在当前执行文件的名称空间中拿到一个模块名,该名字指向模块的名称空间
之后导入import spam,都是直接引用第一次导入的成果,不会重新执行文件
在执行文件中访问模块名称空间中名字的语法:模块名.名字
print(spam.x)#指明道姓地跟spam要名字x,肯定不会与当前执行文件中的名字冲突
总结:import导入模块,在使用时必须加上前缀:模块名.
优点:指明道姓的向某一个名称空间要名字,肯定不会与当前名称空间中的名字冲突
缺点:但凡应用模块中的名字都需要加前缀,不够简洁
2.被导入的模块有独立的名称空间
每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会被导入时,与使用者的全局变量冲突
# spam.py:
# --------------------------------------
# print("from the spam.py")
# money = 1000
# def read1():
# print("spam 模块:", money)
#
# def read2():
# print("spam 模块")
# read1()
#
# def change():
# global money
# money = 0
#
# -----------------------------------------
import spam
# money=10
# print(spam.money)
"""
from the spam.py
1000
spam 模块: 1000
"""
# def read1():
# print("------------")
# spam.read1()
"""
from the spam.py
spam 模块: 1000
"""
# import spam
#
# money=1
#
# spam.change()
#
# print(money)
"""
from the spam.py
1
"""
3.为模块名起别名
为已经导入的模块起别名的方式对编写可扩展的代码很有用
import spam as sm
print(sm.money)
#mysql.py
def sqlparse():
print('from mysql sqlparse')
#oracle.py
def sqlparse():
print('from oracle sqlparse')
#test.py
db_type=input('>>: ')
if db_type == 'mysql':
import mysql as db
elif db_type == 'oracle':
import oracle as db
db.sqlparse()
4.在一行导入多个模块(不推荐)
import sys,os,re
三.使用模块之from....import....
1.from...import...的使用
from spam import read1,read2
首次导入模块发生3件事
1).创建一个模块的名称空间
2).执行文件spam.py,将执行过程中产生的名字都放到模块的名称空间中
3).在当前执行文件中直接拿到一个名字,该名字与模块名称空间中的名字相对应
2.from....import与import的对比
#唯一的区别就是:使用from...import...则是将spam中的名字直接导入到当前的名称空间中,所以在当前名称空间中,直接使用名字就可以了,无需加 前缀:spam.
总结from...import...:
优点:使用时,无需再加前缀,更简洁
缺点:容易与当前名称空间中的名字冲突(覆盖)
*代表从被导入模块中拿到所有名字(不推荐使用)
#大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题
from spam import * # 在spam.py中新增一行 __all__=[“money”,"real”]
3.为模块名起别名
from spam import read1 as r1
r1()
四.模块循环导入问题
模块循环/嵌套导入抛出异常的根本原因是由于在python中模块被导入一次之后,就不会重新导入,只会在第一次导入时执行模块内代码
在我们的项目中应该尽量避免出现循环/嵌套导入,如果出现多个模块都需要共享的数据,可以将共享的数据集中存放到某一个地方
在程序出现了循环/嵌套导入后的异常分析,解决方法如下
# m1.py
print('正在导入m1')
from m2 import y
x='m1'
# m2.py
print('正在导入m2')
from m1 import x
y='m2'
#run.py
import m1
# 测试一
# 执行run.py会抛出异常
"""
正在导入m1
正在导入m2
Traceback (most recent call last):
File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/aa.py", line 1, in <module>
import m1
File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m1.py", line 2, in <module>
from m2 import y
File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m2.py", line 2, in <module>
from m1 import x
ImportError: cannot import name 'x'
"""
# 测试一结果分析
# 先执行run.py--->执行import m1,开始导入m1并运行其内部代码--->打印内容"正在导入m1"
# --->执行from m2 import y 开始导入m2并运行其内部代码--->打印内容“正在导入m2”--->执行from m1 import x,由于m1已经被导入过了,所以不会重新导入,所以直接去m1中拿x,然而x此时并没有存在于m1中,所以报错
#
#
# 测试二:执行文件不等于导入文件,比如执行m1.py不等于导入了m1
# 直接执行m1.py抛出异常
"""
正在导入m1
正在导入m2
正在导入m1
Traceback (most recent call last):
File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m1.py", line 2, in <module>
from m2 import y
File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m2.py", line 2, in <module>
from m1 import x
File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m1.py", line 2, in <module>
from m2 import y
ImportError: cannot import name 'y'
"""
# #测试二分析
# 执行m1.py,打印“正在导入m1”,执行from m2 import y ,导入m2进而执行m2.py内部代码--->打印"正在导入m2",执行from m1 import x,此时m1是第一次被导入,执行m1.py并不等于导入了m1,于是开始导入m1并执行其内部代码--->打印"正在导入m1",执行from m1 import y,由于m1已经被导入过了,所以无需继续导入而直接问m2要y,然而y此时并没有存在于m2中所以报错
# # 解决方法:
# 方法一:导入语句放到最后
#m1.py
print('正在导入m1')
x='m1'
from m2 import y
#m2.py
print('正在导入m2')
y='m2'
from m1 import x
# 方法二:导入语句放到函数中
#m1.py
print('正在导入m1')
def f1():
from m2 import y
print(x,y)
x = 'm1'
f1()
#m2.py
print('正在导入m2')
def f2():
from m1 import x
print(x,y)
y = 'm2'
# #run.py
import m1
m1.f1()
五.py文件区分两种用途:模块与脚本
编写好的一个python文件可以有两种用途:
一:脚本.一个文件就是整个程序,用来被执行
二:模块,文件中存放着一堆功能,用来被导入使用
python为我们内置了全局变量__name__,
当文件被当做脚本执行时:__name__等于"__main__"
当文件被当做模块导入时:__name__等于模块名
作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
if __name__=="__main__":
六.模块搜索路径
模块的查找顺序是:内存中已经加载的模块-->内置模块-->sys.path路径中包含的模块
注意:环境变量是以当前执行文件为准的
强调:所有被导入的模块参照环境变量sys.path都是以执行文件为准的
七.包
1.什么是包?
包是一种通过使用".模块名"来组织python模块名称空间的方式
#具体的:包就是一个包含有__init__.py文件的文件夹,所以其实我们创建包的目的就是为了用文件夹将文件/模块组织起来
#需要强调的是:1.在python3中,即使包下没有__init__.py文件,import包仍然不会报错,而在python2中,包下一定要有该文件,否则import包报错
2.创建包的目的不是为了运行,而是被导入使用,记住,包只是模块的一种形式而已,包的本质就是一种模块
2.为何要用包
包的本质就是一个文件夹,那么文件夹唯一的功能就是将文件组织起来
随着功能越来越多,我们无法将所有的功能都放到一个文件夹中,于是我们使用模块去组织功能,而随着模块越来越多, 我们就需要用文件夹将模块文件组织起来,以此来提高程序的结构性和可维护性
3.绝对导入和相对导入
我们的最顶级包glance是写给别人用的,然后在glance包含内部也会有彼此之间互相导入的需求,这时候就有绝对导入和星队导入两种方式:
绝对导入:以glance作为起始
相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同的目录内)
例如:我们在glance/api/version.py中想要导入glance/cmd/manage.py
在glance/api/version.py
#绝对导入
from glance.cmd import manage
manage.main()
#相对导入
from ..cmd import manage
manage.main()
在练习python中package的相对导入时,即:
from . import xxx 或者 from .. import xxx时会遇到这样的两个错误:
SystemError: Parent module '' not loaded, cannot perform relative import
和
ValueError: attempted relative import beyond top-level package
分析:其实这两个错误的原因归根结底是一样的,在涉及到相对导入时,package所对应的文件夹必须正确的被python解释器视作package,而不是普通文件夹,否则由于不被视作package,无法利用package之间的嵌套关系实现python中包的相对导入。
文件夹被python解释器视作package需要满足两个条件:
1.文件夹中必须有__init__.py文件,该文件可以为空,但必须存在该文件
2.不能作为顶层模块来执行该文件夹中的py文件(既不能作为主函数的入口)
补充:在"from YY import XX"这样的代码中,无论是XX还是YY,只要被python解释器视作package,就会首先调用该package的__init__.py文件。如果都是package,则调用顺序是YY,XX
另外,练习中"from . import XX" 和"from .. import XXX"中的.和.. 可以等同于linux里的当前目录和上一级目录
举个例子:
#目录结构:
# testIm/
#
# --__init__.py
#
# --main.py : from Tom import tom
#
# --Tom/
#
# --__init__.py : print("I'm Tom's __init__!")
#
# --tom.py : from . import tomBrother, from .. import Kate,print("I'm Tom!")
#
# --tomBrother.py print(I'm Tom's Brother!)
#
# --Kate/
#
# --__init__.py : print("I'm Kate's __init__!")
#
# --kate.py
#运行文件:main.py
#结果:I'm Tom's __init__!
# I'm Tom's Brother!
# Traceback (most recent call last):
# File "D:\PythonLearning\TestIm2\main.py", line 3, in <module>
# from cat import cat
# File "D:\PythonLearning\TestIm2\cat\cat.py", line 4, in <module>
# from .. import dog
# ValueError: attempted relative import beyond top-level package
# >>>
可以看到from . import tomBrother 顺利执行,首先执行了Tom文件夹下的__init__.py文件,后来执行了tomBrother.py文件,但是当执行到"from .. import Kate"时报错,这是因为我们是在TestIm文件夹下把main.py文件作为主函数的入口执行的,因此尽管TestIm文件夹中有__init__.py文件,但是该文件夹不能被python解释器视作package,即Tom package不存在上层package,自然会报错相对导入时超出了最高层级的package。
修改方法:
# test/
#
# --main.py : from testIm.Tom import tom
#
# --testIm/
#
# --__init__.py
#
# --Tom/
#
# --__init__.py : print("I'm Tom's __init__!")
#
# --tom.py : from . import tomBrother, from .. import Kate,print("I'm Tom!")
#
# --tomBrother.py print(I'm Tom's Brother!)
#
# --Kate/
#
# --__init__.py : print("I'm Kate's __init__!")
#
# --kate.py
#运行文件:main.py
#结果:
# I'm top's __init__!
# I'm Tom's __init__!
# I'm Tom's Brother!!
# I'm Kate's __init__!
# I'm Tom!
即主函数入口不在TestIm中,则TestIm和其同样包含__init__.py文件的子文件夹都被python解释器视作为package,形成相应的嵌套关系。可以正常使用from . import XXX 和 from .. import XXX。