三维几何图形创作方法(Geometry3D)之一

        前面我们介绍了在场景中构建二维几何图形的方法。 二维几何图形创作方法(Geometry2D)

        这里我们继续介绍三维几何图形的构建方法。

        同样, 输入两个点A、B,要能够快速的画出三维几何图形。相比于二维图形,三维图形要复杂得多。

        要在二维平面展示三维图形,需要先了解轴测投影作图法,高中应该学过,复习一下。

轴测投影

        常用的轴测投影有两种:一个是“斜二测”,一个是“正等测”。

斜二测

        当正投影面与轴测投影面平行时,得到的物体在轴测投影面上的投影是斜二测图。斜二轴测图X,Y轴之间的角度是135°,X,Z轴之间的角度是90°,Y,Z轴之间的角度是135°,且Y轴的轴向伸缩率为0.5,X,Z轴的轴向伸缩率为1.

        为了方便与屏幕坐标系对应,在后续计算中,我们使用下面的坐标系:


/*
 *              Z ^      _/ Y
 *                |    _/
 *                |  _/
 *                | /
 *                o---------------> X
 */

        此时三维坐标到二维屏幕坐标系的变换矩阵为:

A=\begin{bmatrix} 1 & \sqrt{2}/4 & 0 \\ 0 & -\sqrt{2}/4 & -1 \end{bmatrix}

        斜二测图比较适用没有弧形的图形,比如正方体,锥体。 

正等测

        当相互垂直的直角坐标轴与轴测投影面倾角相等时,得到的物体在轴测投影面上的投影是正等测图。正等轴测图X,Y,Z三个轴之间的角度是120°,并且三个轴的轴向伸缩系数都是1。

 

         

        在正等测图中,三维坐标到二维屏幕坐标系的变换矩阵为:

A=\begin{bmatrix} -\sqrt{2}/2 & \sqrt{2}/2 & 0 \\ \sqrt{6}/6 & \sqrt{6}/6 & -\sqrt{6}/3 \end{bmatrix}

        正等测图比较适用与带有圆形的图形,比如圆柱,圆锥。


        因为三维图形的作图算法比较复杂,接下来用两个篇幅继续说明。

三维几何图形创作方法(Geometry3D)之二

三维几何图形创作方法(Geometry3D)之三

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fighting Horse

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值