CF1995A.Diagonals题解(CN)

首先我们先看题目
题目描述
给 Vitaly503 一个方格棋盘,棋盘的一边是 nk 个筹码。他意识到所有这些 k 芯片都需要放置在棋盘的单元格上(一个单元格上不能放置超过一个芯片)。让我们把第 i 行和第 j 列中的单元格表示为 (i ,j) 。对角线是指 i + j 值相同的单元格集合。例如, (3, 1) 、 (2, 2) 和 (1, 3) 位于同一条对角线上,而 (1, 2) 和 (2, 3) 不在同一条对角线上。如果一条对角线上至少有一个单元格,那么这条对角线就被称为 "占用 "对角线。请判断在所有放置 k 的筹码中,被占对角线的最少数目是多少。

输入

每个测试由多组输入数据组成。第一行包含一个整数 t ( 1 <= t <=  500 ) - 输入数据集的数量。然后是各组输入数据的说明。

每组输入数据的唯一一行包含两个整数 n , k ( 1 <= n <= 100, 0 <= k <= n^{2} ) - 分别是棋盘的边数可用筹码数

输出
对于每组输入数据,输出一个整数--在放置所有 k 个筹码后,他能得到的至少有一个筹码的对角线的最小占位数。

解决方案

我们这道题目可以通过画图来解决
接下来是画图的过程

画图分析

通过这个图片,我们可以得知,最长的一条对角线的值为n,只有一条
而次短的对角线就有2条,长度为n-1
依此类推,知道长度为1
求解最短的对角线使用数量
那么我们就可以使用贪心思想
先用最大的,最大的用完了,再用次小的,再用次次小的,依此类推

代码展示


    #include <bits/stdc++.h>
    using namespace std;
    int main(){
        long long t,n,k;
        cin>>t;
        while(t--){
            cin>>n>>k;
            long long count=0;
            if(k<=n){
                if(k>0) {
                    cout<<'1'<<endl;
                    continue;
                }
                else{
                    cout<<'0'<<endl;
                    continue;
                }
            }
            k=k-n;
            n=n-1;
            while(k>0){
                if(n==0){
                    break;
                }
                k=k-n;
                count++;
                if(count%2==0)n=n-1;
            }
            cout<<count+1<<endl;
        }
        return 0;
    }

撒花完结*★,°*:.☆( ̄▽ ̄)/$:*.°★* 。

我的博客

www.luyoulingoi.com.cn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值