首先我们先看题目
题目描述
给 Vitaly503 一个方格棋盘,棋盘的一边是 n 和 k 个筹码。他意识到所有这些 k 芯片都需要放置在棋盘的单元格上(一个单元格上不能放置超过一个芯片)。让我们把第 i 行和第 j 列中的单元格表示为 (i ,j) 。对角线是指 i + j 值相同的单元格集合。例如, (3, 1) 、 (2, 2) 和 (1, 3) 位于同一条对角线上,而 (1, 2) 和 (2, 3) 不在同一条对角线上。如果一条对角线上至少有一个单元格,那么这条对角线就被称为 "占用 "对角线。请判断在所有放置 k 的筹码中,被占对角线的最少数目是多少。
输入
每个测试由多组输入数据组成。第一行包含一个整数 t ( 1 <= t <= 500 ) - 输入数据集的数量。然后是各组输入数据的说明。
每组输入数据的唯一一行包含两个整数 n , k ( 1 <= n <= 100, 0 <= k <= ) - 分别是棋盘的边数和可用筹码数。
输出
对于每组输入数据,输出一个整数--在放置所有 k 个筹码后,他能得到的至少有一个筹码的对角线的最小占位数。
解决方案
我们这道题目可以通过画图来解决
接下来是画图的过程
画图分析
通过这个图片,我们可以得知,最长的一条对角线的值为n,只有一条
而次短的对角线就有2条,长度为n-1
依此类推,知道长度为1
求解最短的对角线使用数量
那么我们就可以使用贪心思想
先用最大的,最大的用完了,再用次小的,再用次次小的,依此类推
代码展示
#include <bits/stdc++.h>
using namespace std;
int main(){
long long t,n,k;
cin>>t;
while(t--){
cin>>n>>k;
long long count=0;
if(k<=n){
if(k>0) {
cout<<'1'<<endl;
continue;
}
else{
cout<<'0'<<endl;
continue;
}
}
k=k-n;
n=n-1;
while(k>0){
if(n==0){
break;
}
k=k-n;
count++;
if(count%2==0)n=n-1;
}
cout<<count+1<<endl;
}
return 0;
}
撒花完结*★,°*:.☆( ̄▽ ̄)/$:*.°★* 。
我的博客
www.luyoulingoi.com.cn