若一张无向图的 N N N个节点 ( N ≥ 2 ) (N \ge 2) (N≥2)可以被分成 A A A, B B B两个非空集合,其中 A ∩ B = ϕ A \cap B=\phi A∩B=ϕ,并且在同一集合内的点之间都没有边相连,那么称这张无向图为一张二分图。 A , B A,B A,B分别称为二分图的左部和右部。
二分图判定
定理:
若一张无向图是一张二分图,当且仅当图中不存在奇环(一个环中的边数不能为奇数)。
感性证明一下:若这个图有奇环,那么必然会有一个节点同时属于A和B两个集合。
根据该定理,我们可以用染色法进行二分图的判定。大致思想如下:
尝试用黑白两种颜色染色,若一个节点在染色的过程中产生了冲突,即一个点会同时被染上两种颜色,那么说明图中存在奇环。可以基于深度优先遍历实现。
二分图最大匹配(匈牙利算法)
原理之后会不上(咕咕咕 )
#include<bits/stdc++.h>
using namespace std;
#define in read()
#define MAXN 1010
#define MAXM 500500
inline int read(){
int x = 0; char c = getchar();
while(c < '0' or c > '9') c = getchar();
while('0' <= c and c <= '9')
x = x * 10 + c - '0', c = getchar();
return x;
}
int n = 0; int m = 0; int E = 0;
int tot = 0;
int first[MAXN] = { 0 };
int nxt[MAXM] = { 0 };
int to[MAXM] = { 0 };
inline void add(int x, int y){
nxt[++tot] = first[x];
first[x] = tot, to[tot] = y;
}
int ans = 0;
int vis[MAXN] = { 0 };
int mat[MAXN] = { 0 };
bool find(int x){
for(int e = first[x]; e; e = nxt[e]){
int y = to[e];
if(vis[y]) continue; vis[y] = 1;
if(!mat[y] or find(mat[y])){
mat[y] = x; return true;
}
}
return false;
}
int main(){
n = in, m = in, E = in;
for(int i = 1; i <= E; i++){
int x = in, y = in;
add(x, y + n), add(y + n, x);
}
for(int i = 1; i <= n; i++){
memset(vis, 0, sizeof vis);
if(find(i)) ans++;
}
cout << ans << '\n';
return 0;
}