二分图相关

 若一张无向图的 N N N个节点 ( N ≥ 2 ) (N \ge 2) (N2)可以被分成 A A A B B B两个非空集合,其中 A ∩ B = ϕ A \cap B=\phi AB=ϕ,并且在同一集合内的点之间都没有边相连,那么称这张无向图为一张二分图。 A , B A,B A,B分别称为二分图的左部和右部。

二分图判定

定理:
 若一张无向图是一张二分图,当且仅当图中不存在奇环(一个环中的边数不能为奇数)。
 感性证明一下:若这个图有奇环,那么必然会有一个节点同时属于A和B两个集合。

 根据该定理,我们可以用染色法进行二分图的判定。大致思想如下:
 尝试用黑白两种颜色染色,若一个节点在染色的过程中产生了冲突,即一个点会同时被染上两种颜色,那么说明图中存在奇环。可以基于深度优先遍历实现。

二分图最大匹配(匈牙利算法)

原理之后会不上(咕咕咕

#include<bits/stdc++.h>
using namespace std;
#define in read()
#define MAXN 1010
#define MAXM 500500

inline int read(){
	int x = 0; char c = getchar();
	while(c < '0' or c > '9') c = getchar();
	while('0' <= c and c <= '9')
		x = x * 10 + c - '0', c = getchar();
	return x;
}


int n = 0; int m = 0; int E = 0;
int tot = 0;
int first[MAXN] = { 0 };
int   nxt[MAXM] = { 0 };
int    to[MAXM] = { 0 };
inline void add(int x, int y){
	nxt[++tot] = first[x];
	first[x] = tot, to[tot] = y;
}

int ans = 0;
int vis[MAXN] = { 0 };
int mat[MAXN] = { 0 };
bool find(int x){
	for(int e = first[x]; e; e = nxt[e]){
		int y = to[e];
		if(vis[y]) continue; vis[y] = 1;
		if(!mat[y] or find(mat[y])){
			mat[y] = x; return true;
		}
	}
	return false;
}

int main(){
	n = in, m = in, E = in;
	for(int i = 1; i <= E; i++){
		int x = in, y = in;
		add(x, y + n), add(y + n, x);
	}
	for(int i = 1; i <= n; i++){
		memset(vis, 0, sizeof vis);
		if(find(i)) ans++;
	}
	cout << ans << '\n';
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值