vllm安装和部署私有大模型以及解决LLamaFactory微调效果与vllm部署效果不一致

文章目录


前言

vLLM 是一个快速且易于使用的库,专为大型语言模型 (LLM) 的推理和部署而设计。具体参考官方文档 https://vllm.hyper.ai/docs/

LLaMA-Factory 是一个专为 ​LLaMA 系列大语言模型​(如 Meta 的 LLaMA、LLaMA-2 等)设计的开源工具库,主要用于模型的 ​高效微调(Fine-tuning)​部署 和 ​应用开发。它旨在简化大模型定制化流程,降低用户使用门槛,支持快速适配不同下游任务(如对话、问答、代码生成等)。具体可以参考文档https://llamafactory.readthedocs.io/zh-cn/latest/getting_started/installation.html
 


一、vLLm部署大模型安装和部署步骤?

1.创建自己的虚拟环境

conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm

2.启动vllm服务端,服务端口8000,这个服务端口不要关

vllm serve /root/autodl-tmp/demo/model/Qwen/Qwen2.5-1.5B-Instruct_merged

#Qwen2.5-1.5B-Instruct_merged注释这个自己训练好的模型

3.进行测试,下面使用多轮对话代码进行测试,将代码拷贝到服务器上,进行执行,并与在llamafactory上对话,以及原始数据进行对比,发现部署到vllm的模型对话达不到llamafactory上对话的效果

将下面代码拷贝到/root/autodl-tmp/demo,建个test.py文件,执行下面命令

python test.py
#多轮对话
from openai import OpenAI

#定义多轮对话方法
def run_chat_session():
    #初始化客户端
    client = OpenAI(base_url="http://localhost:8000/v1/",api_key="token-abc123")
    #初始化对话历史
    chat_history = []
    #启动对话循环
    while True:
        #获取用户输入
        user_input = input("用户:")
        if user_input.lower() == "exit":
            print("退出对话。")
            break
        #更新对话历史(添加用户输入)
        chat_history.append({"role":"user","content":user_input})
        #调用模型回答
        try:
            chat_complition = client.chat.completions.create(messages=chat_history,model="/root/autodl-tmp/demo/model/Qwen/Qwen2.5-1.5B-Instruct_merged")
            #获取最新回答
            model_response = chat_complition.choices[0]
            print("AI:",model_response.message.content)
            #更新对话历史(添加AI模型的回复)
            chat_history.append({"role":"assistant","content":model_response.message.content})
        except Exception as e:
            print("发生错误:",e)
            break
if __name__ == '__main__':
    run_chat_session()

二、解决LLamaFactory微调效果与vllm部署效果不一致

1.分析原因

LLaMA-Factory主要用于微调模型,特别是LLaMA系列的大模型。在微调过程中,对话模板(template)是非常重要的,它决定了输入数据的格式,包括系统提示、用户输入、模型回复的结构,以及使用的特殊标记(如开始符、结束符)。不同的模型可能需要不同的模板,比如LLaMA-2和ChatGLM的模板可能不一样,因为它们训练时使用的数据格式不同。

vLLM它是一个推理和服务部署的库,专注于高效地运行大模型。用户部署模型时,可能需要调整对话模板,以确保生成的结果符合预期。例如,vLLM可能没有自动处理模板的功能,需要用户显式地设置输入格式,或者在生成回复后添加结束符。

总之要解决要确保训练和部署时的对话模板一致,否则模型的生成效果可能受到影响,即对话模版对齐。

2.解决问题:在部署vllm的时候指定对话模版

  1. 将llamafactory定义的对话模版文件转换vllm部署需要的jinja文件,llamafactory对话模版文件的位置在LLaMA-Factory/src/llamafactory/data/template,将下面代码拷贝到test.py,放到template.py同一级目录中,切换到安装了llamafactory的环境进行脚本执行,否则会报错
    # test.py
    import sys
    import os
    from pathlib import Path
    
    # 配置路径
    sys.path.append(r"/root/autodl-tmp/demo/llamafactory")  # 替换为你的 LLaMA-Factory 路径
    output_file = r"/root/autodl-tmp/demo/template_qwen.jinja"  # 自定义输出文件路径
    
    # 创建输出目录(如果不存在)
    Path(output_file).parent.mkdir(parents=True, exist_ok=True)
    
    from llamafactory.data.template import TEMPLATES
    from transformers import AutoTokenizer
    
    # 1. 初始化分词器
    tokenizer = AutoTokenizer.from_pretrained(r"/root/autodl-tmp/demo/model/Qwen/Qwen2.5-1.5B-Instruct")
    
    # 2. 获取模板对象
    template_name = "qwen"
    template = TEMPLATES[template_name]
    
    # 3. 修复分词器的 Jinja 模板
    template.fix_jinja_template(tokenizer)
    
    # 4. 将模板内容写入指定文件
    with open(output_file, "w", encoding="utf-8") as f:
        f.write(tokenizer.chat_template)
    
    print(f"模板已保存至:{output_file}")

    不切换环境,没安装llamafactory,会报以下错误:

  2. 执行vllm serve 命令,指定对话模版
    vllm serve /root/autodl-tmp/demo/model/Qwen/Qwen2.5-1.5B-Instruct_merged --chat-template /root/autodl-tmp/demo/template_qwen.jinja
  3.  等重启完后,进行验证,重启一个窗口,执行python test.py,得到效果,效果不错
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值