LC121 买卖股票的最佳时机
class Solution {
public:
int maxProfit(vector<int>& prices) {
//维护一个ans,记录到当前为止最大收益,维护一个minprice,记录当前为止最小价格
int ans=0,minprice=prices[0];
for(auto price:prices){
minprice=min(minprice, price);
ans=max(ans, price-minprice);
}
return ans;
}
};
LC122买卖股票的最佳时机 II
这题,每天和后面一天的收益加起来就是最大收益,因为如果p[i+1]<p[i],收益上0,否则最大收益加上p[i+1]-p[i],可以模拟下后面有比p[i+1]更大的情况,这个应该是贪心的思路,需要证明
class Solution {
public:
int maxProfit(vector<int>& prices) {
int ans=0;
int n=prices.size();
for(int i=0;i<n-1;++i){
if(prices[i]<prices[i+1]){
ans = ans+prices[i+1]-prices[i];
}
}
return ans;
}
};
看官方题解
DP,空间O(n)
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n=prices.size();
vector<vector<int>> dp(n, vector<int>(2,0));
dp[0][0]=0;
dp[0][1]=-prices[0];
for(int i=0;i<n-1;++i){
dp[i+1][0]=max(dp[i][0], dp[i][1]+prices[i+1]);
dp[i+1][1]=max(dp[i][1], dp[i][0]-prices[i+1]);
}
return dp[n-1][0];
}
};
优化空间复杂度
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n=prices.size();
//vector<vector<int>> dp(n, vector<int>(2,0));
int dp0=0;
int dp1=-prices[0];
for(int i=0;i<n-1;++i){
dp0=max(dp0, dp1+prices[i+1]);
dp1=max(dp1, dp0-prices[i+1]);
}
return dp0;
}
};
LC516最长回文子序列
递推公式是先有i+1,所以从后往前遍历i
j先有j-1,所以从前往后遍历j
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n=s.size();
vector<vector<int>> dp(n, vector<int>(n,0));//记住这个初始化
for(int i=n-1; i>=0; --i){
dp[i][i]=1;
for(int j=i+1; j<n; ++j){
if(s[i]==s[j]){
dp[i][j]=dp[i+1][j-1]+2;
}
else{
dp[i][j]=max(dp[i][j-1], dp[i+1][j]);
}
}
}
return dp[0][n-1];
}
};
LC53最大子数组和
动规法
class Solution {
public:
int maxSubArray(vector<int>& nums) {
//O(n^2)是很好写的,动规写O(n)的版本,然后要加空间复杂度
int ans=nums[0];
int dp = nums[0];//这里初始化不能INT_MIN,加的nums[i]可能负数越界
int n=nums.size();
for(int i=1;i<n;++i){
dp=max(dp+nums[i], nums[i]);
ans=max(ans, dp);
}
return ans;
}
};
贪心法
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int ans=INT_MIN;
int sum=0;
int n=nums.size();
for(int i=0; i<n; ++i){
sum+=nums[i];//sum是当前计算的子序和
ans=max(ans, sum);//更新ans
if(sum<0) sum=0;//<0的话重新计算子序和
}
return ans;
}
};
分治法
算了下次再说
LC1143最长公共子序列
动规都是套路,这题可以直接用案例打表,0开始,看看表是什么个数,就知道怎么写了
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
//暴力O(n^2)
int m=text1.size(), n=text2.size();
vector<vector<int>> dp(m+1, vector<int> (n+1,0));
for(int i=1; i<=m; ++i){
for(int j=1; j<=n; ++j){
if(text1[i-1]==text2[j-1]){
dp[i][j]=dp[i-1][j-1]+1;
}
else{
dp[i][j]=max(dp[i][j-1], dp[i-1][j]);
}
}
}
return dp[m][n];
}
};
知识
- 数组初始化
vector<vector<int>> dp(n, vector<int>(n,0));//记住这个初始化