2022-03-05Leetcode训练营_动规

LC121 买卖股票的最佳时机

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        //维护一个ans,记录到当前为止最大收益,维护一个minprice,记录当前为止最小价格
        int ans=0,minprice=prices[0];
        for(auto price:prices){
            minprice=min(minprice, price);
            ans=max(ans, price-minprice);
        }
        return ans;
    }
};

LC122买卖股票的最佳时机 II

这题,每天和后面一天的收益加起来就是最大收益,因为如果p[i+1]<p[i],收益上0,否则最大收益加上p[i+1]-p[i],可以模拟下后面有比p[i+1]更大的情况,这个应该是贪心的思路,需要证明

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int ans=0;
        int n=prices.size();
        for(int i=0;i<n-1;++i){
            if(prices[i]<prices[i+1]){
                ans = ans+prices[i+1]-prices[i];
            }
        }
        return ans;

    }
};

看官方题解
DP,空间O(n)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        vector<vector<int>> dp(n, vector<int>(2,0));
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        for(int i=0;i<n-1;++i){
            dp[i+1][0]=max(dp[i][0], dp[i][1]+prices[i+1]);
            dp[i+1][1]=max(dp[i][1], dp[i][0]-prices[i+1]);
        }
        return dp[n-1][0];

    }
};

优化空间复杂度

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        //vector<vector<int>> dp(n, vector<int>(2,0));
        int dp0=0;
        int dp1=-prices[0];
        for(int i=0;i<n-1;++i){
            dp0=max(dp0, dp1+prices[i+1]);
            dp1=max(dp1, dp0-prices[i+1]);
        }
        return dp0;
    }
};

LC516最长回文子序列

递推公式是先有i+1,所以从后往前遍历i
j先有j-1,所以从前往后遍历j

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n=s.size();
        vector<vector<int>> dp(n, vector<int>(n,0));//记住这个初始化
        for(int i=n-1; i>=0; --i){
            dp[i][i]=1;
            for(int j=i+1; j<n; ++j){
                if(s[i]==s[j]){
                    dp[i][j]=dp[i+1][j-1]+2;
                }
                else{
                    dp[i][j]=max(dp[i][j-1], dp[i+1][j]);
                }
            }
        }
        return dp[0][n-1];
    }
};

LC53最大子数组和

动规法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //O(n^2)是很好写的,动规写O(n)的版本,然后要加空间复杂度
        int ans=nums[0];
        int dp = nums[0];//这里初始化不能INT_MIN,加的nums[i]可能负数越界
        int n=nums.size();
        for(int i=1;i<n;++i){
            dp=max(dp+nums[i], nums[i]);
            ans=max(ans, dp);
        }
        return ans;
    }
};

贪心法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int ans=INT_MIN;
        int sum=0;
        int n=nums.size();
        for(int i=0; i<n; ++i){
            sum+=nums[i];//sum是当前计算的子序和
            ans=max(ans, sum);//更新ans
            if(sum<0) sum=0;//<0的话重新计算子序和
        }
        return ans;
    }
};

分治法
算了下次再说

LC1143最长公共子序列

动规都是套路,这题可以直接用案例打表,0开始,看看表是什么个数,就知道怎么写了

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        //暴力O(n^2)
        int m=text1.size(), n=text2.size();
        vector<vector<int>> dp(m+1, vector<int> (n+1,0));
        for(int i=1; i<=m; ++i){
            for(int j=1; j<=n; ++j){
                if(text1[i-1]==text2[j-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else{
                    dp[i][j]=max(dp[i][j-1], dp[i-1][j]);
                }
            }
        }
        return dp[m][n];
    }
};

知识

  • 数组初始化
vector<vector<int>> dp(n, vector<int>(n,0));//记住这个初始化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值