作图方法2

##作图
fig,(ax1,ax2)=plt.subplots(2,1,figsize=(10,12))
ax1.plot(X,Y,label='沪深300')
ax1.plot(x,iy1,'r.',label='插值点')
ax1.set_ylim(Y.min()-10,Y.max()+10)
ax1.set_ylabel('指数')
ax1.set_title('线性插值')
ax1.legend()
ax2.plot(X,Y,label='沪深300')
ax2.plot(x,iy3,'b.',label='插值点')
ax2.set_ylim(Y.min()-10,Y.max()+10)
ax2.set_ylabel('指数')
ax2.set_title('三次样条插值')
ax2.legend()


依据《Python与量化投资 从基础到实战》的内容练习

杨氏模量(Young's Modulus)是材料力学中的一个重要参数,用于描述材料在弹性范围内的应力与应变之间的关系。以下是关于如何绘制杨氏模量曲线的方法及相关信息: --- ### 方法一:实验测量法 通过拉伸试验机对试样施加外力,并记录其长度变化。 - 准备一根标准形状的金属棒或其他材料样品。 - 对样品逐渐增加拉力,同时用位移传感器或千分尺精确测量样品的形变量。 - 绘制应力 (σ) 和应变 (ε) 曲线图。 公式如下: $$ E = \frac{\sigma}{\varepsilon} $$ 其中: - \(E\) 是杨氏模量, - \(\sigma\) 是应力 (\(F/A\)), - \(\varepsilon\) 是应变 (\(\Delta L/L_0\))。 --- ### 方法二:数据分析绘图软件辅助 利用Excel、MATLAB等工具处理数据并生成图像。 - 收集实验得到的数据点,包括作用力\( F \)和对应的变形量\( \Delta L \)。 - 转换为应力和应变值后输入表格。 - 使用散点图功能连接各点形成直线段,在初始阶段呈现近似线性增长的部分即代表杨氏模量区域。 例如,在Matlab中可以编写简单脚本来完成这一过程: ```matlab % 示例代码 stress = [0, 2, 4, 6]; % 应力数组 N/m^2 strain = [0, 0.001, 0.002, 0.003]; % 应变数组 m/m plot(strain,stress,'o'); hold on; p=polyfit(strain,stress,1); x=linspace(min(strain),max(strain)); y=polyval(p,x); plot(x,y,'r'); title('Stress vs Strain Curve for Young''s Modulus Calculation'); xlabel('\epsilon(Strain)'); ylabel('\sigma(Stress)') legend('Data Points','Linear Fit') ``` --- ### 注意事项 确保测试环境稳定避免外界干扰因素导致误差过大;选择合适尺寸规格样本保证结果准确性;多次重复验证提高可信度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值