幂法求解矩阵特征值及特征向量

 

幂法求解矩阵特征值及特征向量




【算法原理】
幂法是通过求矩阵特征向量来求出特征值的一种迭代法.其基本思想是:若我们求某个n阶方阵A的特征值和特征向量,先任取一个初始向量X(0),构造如下序列:
       X(0)  ,X(1)  =AX(0)  ,X(2)  =AX(1) ,…, X(K)  =AX(K+1)  ,…  ⑴
       当k增大时,序列的收敛情况与绝对值最大的特征值有密切关系,分析这一序列的极限,即可求出按模最大的特征值和特征向量.
       假定矩阵A有n个线性无关的特征向量.n个特征值按模由大到小排列:
                         │λ1│>=│λ2│>=…>=│λn│              ⑵
    其相应的特征向量为:
                         V1 ,V2 , …,Vn                                       ⑶
     它们构成n维空间的一组基.任取的初始向量X(0)由它们的线性组合给出
                         X(0)=a1V1+a2V2+…+anVn                         ⑷
     由此知,构造的向量序列有
          X(k)  =AX(k-1) = A2X(k-2) =…=AkX(0)  = a1λ1kV1+a2 λ2kV2+…+anλnkVn                    ⑸
   下面按模最大特征值λ1是单根的情况讨论:
      
 由此公式(5)可写成
                   X(k) = λ1k (a1V1+a2 (λ2/λ1)kV2+…+an(λn/λ1)kVn  )       ⑹ 
   若a1≠0,由于|λi/λ1 |<1 (i≥2),故k充分大时,
                  X(k) = λ1k (a1V1+εk)
    其中εk为一可以忽略的小量,这说明X(k)与特征向量V1相差一个常数因子,即使a1=0,由于计算过程的舍入误差,必将引入在方向上的微小分量,这一分量随着迭代过程的进展而逐渐成为主导,其收敛情况最终也将与相同。
特征值按下属方法求得:
            λ1 ≈Xj(k+1)/ Xj(k)                                        ⑺
其中Xj(k+1), Xj(k)分别为X(k+1),X(k)的第j各分量。
    实际计算时,为了避免计算过程中出现绝对值过大或过小的数参加运算,通常在每步迭代时,将向量“归一化”即用的按模最大的分量         max  |Xj(k)| 1≤j≤n
去除X(k)的各个分量,得到归一化的向量Y(k),并令X(k+1) = AY(k)


由此得到下列选代公式 :
          Y(k) = X(k)/║ X(k)║∞
           X(k+1) = AY(k)           k=0,1,2,…             ⑻
当k充分大时,或当║ X(k)- X(k+1)║<ε时,
          Y(k)≈V1
          max  |Xj(k)| ≈ λ1                                ⑼
          1≤j≤n
【算法描述】

设矩阵 有 个线性无关的特征向量,主特征值 满足

                   ,则 ,下式构造的向量序列 
                       
           
     
              有     ,  

【源代码】

//
//幂法求矩阵特征值      // 
//author:zhiyong fang           //
//date:15/11/2004              //

#include <iostream.h>
#include <math.h>
#define N 3
void matrixx(double A[N][N],double x[N],double v[N])
{
    for(int i=0;i<N;i++)
          {
            v[i]=0;
            for(int j=0;j<N;j++)
                v[i]+=A[i][j]*x[j];
          }
    
}
double slove(double v[N])
{
    double max;
    for(int i=0;i<N-1;i++) max=v[i]>v[i+1]?v[i]:v[i+1];
    return max;
}
void main()    
{
    //data input
double A[N][N]={1.0,1.0,0.5,1.0,1.0,0.25,0.5,0.25,2.0};
    double x[N]={1,1,1};
    double v[N]={0,0,0};
    double u[N]={0,0,0};
    double p[N]={0,0,0};
    double e=1e-10,delta=1;
    int k=0;
    while(delta>=e)
    {
                for(int q=0;q<N;q++) p[q]=v[q];
        matrixx(A,x,v);
        for(int i=0;i<N;i++) u[i]=v[i]/(slove(v));
        delta=fabs(slove(v)-slove(p));
        k++;
        for(int l=0;l<N;l++) x[l]=u[l];
    }
    cout << "迭代次数" << k << endl;
    cout << "矩阵的特征值" << slove(v) << endl;
    cout << "(" ;
    for(int i=0;i<N;i++) cout << u[i] << " " ;
    cout  << ")" << endl;

[checkdata]
原始数据
double A[N][N]={1.0,1.0,0.5,1.0,1.0,0.25,0.5,0.25,2.0};
    double x[N]={1,1,1};
    double v[N]={0,0,0};
    double u[N]={0,0,0};
    double p[N]={0,0,0};
    double e=1e-10,delta=1;
输出结果
迭代次数41
矩阵的特征值2.53653
(0.748221 0.649661 1 )

精度满足要求,程序设计及算法合理
 
  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
幂法(Power Iteration Method)是一种常用的近似计算矩阵特征值特征向量的方法。这种方法特别适合于处理大型稀疏矩阵,因为它的主要操作是对矩阵进行乘法,而不需要对矩阵进行大规模的求逆。在C语言中,我们可以编写一个简单的程序来实现这个过程。 以下是一个简单的反幂法求解最大特征值对应特征向量的C代码示例: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> // 矩阵乘法函数 void matrix_multiply(double **A, double **B, int size, double **C) { for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { C[i][j] = 0.0; for (int k = 0; k < size; k++) { C[i][j] += A[i][k] * B[k][j]; } } } } // 反幂法函数 void power_iteration(double **A, double **x, double &lambda, double epsilon, int max_iter) { double *x_new = (double*)malloc(size * sizeof(double)); double norm_x = 0.0; for (int iter = 0; iter < max_iter; iter++) { // 复制当前特征向量 for (int i = 0; i < size; i++) { x_new[i] = x[i]; } // 更新特征向量 matrix_multiply(A, x_new, size, x_new); norm_x = sqrt(x_new*x_new + x_new*x_new); // 假设是2维矩阵 if (norm_x == 0) break; // 防止除零错误 for (int i = 0; i < size; i++) { x[i] /= norm_x; } // 更新特征值 lambda = x * A[0] + x * A; // 假设是2x2矩阵 // 检查收敛条件 if (fabs(lambda - old_lambda) < epsilon) break; old_lambda = lambda; } free(x_new); } int main() { int size = 2; // 用于演示,根据实际需求调整 double **A = (double**)malloc(size * sizeof(double*)); for (int i = 0; i < size; i++) { A[i] = (double*)malloc(size * sizeof(double)); // 初始化矩阵A // A[i][j] = ...; // 根据你的矩阵数据填充 } double *x = (double*)malloc(size * sizeof(double)); x = 1.0; // 初始猜测特征向量 x = 0.0; double lambda = 0.0, old_lambda = 0.0; double epsilon = 1e-6; // 定义收敛阈值 int max_iter = 100; power_iteration(A, x, lambda, epsilon, max_iter); printf("最大特征值: %lf\n", lambda); printf("对应特征向量: (%lf, %lf)\n", x, x); for (int i = 0; i < size; i++) { free(A[i]); } free(A); free(x); return 0; } ``` 这个程序首先定义了矩阵乘法和反幂法迭代,然后在`main`函数中创建矩阵`A`,初始化向量`x`,并调用`power_iteration`函数计算特征值和向量。注意,你需要根据实际的矩阵数据填充矩阵`A`,并且这个程序假设输入的是实数矩阵。 相关问题: 1. 反幂法是如何更新特征向量的? 2. 如何判断反幂法是否达到收敛? 3. 这个程序如何处理不同维度的矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值