【GeoDa实用技巧100例】023:geoda探索性空间数据分析

本文介绍了探索性空间数据分析方法,重点探讨了全局和局部空间关联性指标,如莫兰指数和盖里指数。这些工具用于检测变量的空间自相关性和集聚现象,以减少直观判读地图的主观性。GeoDa作为一款免费开源软件,提供空间自相关统计和聚类分析等功能,支持空间数据的深入分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


探索性空间数据分析是一种具有识别功能的空间数据分析方法,主要用于探测一些变量的空间关联性和集聚现象。某一变量在空间上发生集聚,意味着在一定区域内,这一变量在各个地域单元之间具有自相关性:某一地域单元该变量较高,其周围地域单元该变量也较高;某一地域单元该变量较低,其周围地域单元该变量也较低。因此,空间自相关性可以看作是一种反映集聚现象的尺度。

传统上,我们一般单纯通过直观判读数值地图来分析空间集聚问题。然而,这种方法往往带有较大的主观性和模糊性,受判读者的经验和偏好的影响很大。而探索性空间数据分析可以通过“让数据说话”的特点,在相当程度上缓解(注意决非彻底消除)直观判读数值地图带来的弊端。

探索性空间数据分析主要使用两类工具:第一类用来分析整个区域关联性的指数,该类指数称之全局空间关联性指标,如全局莫兰(Moran)指数I和盖里(Geary)指数C等。全局关联性指标可以分为自关联性和交叉关联性两种。前者是反映同一变量在研究区域内的自相关性;后者则是反映两个不同变量在研究区域内的相关性。一般来说,各类指标都可以分成自相关性和交叉相关性两种。第二类用来分析区域内各个地域单元关联性的指数,该类指数称之局部空间自相关指标,如局部莫兰指数I和盖里指数C等。

全局空间关联性指标

莫兰在1950年提出了全局莫兰指数I。它是最早应用于检验空

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘一哥GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值