贪心算法<区间选点问题>
A - Radar Installation
Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u
Description
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
Sample Input
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Sample Output
Case 1: 2Case 2: 1
#include<iostream> #include<string> #include<stdlib.h> #include<algorithm> #include<math.h> using namespace std; #define MAXLEN 1001 struct point{ double xl; double xr; }; point record[MAXLEN]; int cmp(point ele1,point ele2){ if(fabs(ele1.xr-ele2.xr)<1e-5){ return ele1.xl>ele2.xl; }else{ return ele1.xr<ele2.xr; } } int greedy(int n){ double cur=record[0].xr; int result=1; for(int a=1;a<n;a++){ if(cur<record[a].xl){ result++; cur=record[a].xr; } } return result; } int main(){ int n,d; int px,py; bool state; int result; int ncase=0; while(cin>>n>>d,n){ state=true; ncase++; for(int a=0;a<n;a++){ cin>>px>>py; if(py>d) state=false; if(state){ double temp=sqrt(double(d*d-py*py)); record[a].xl=px-temp; record[a].xr=px+temp; } } if(state){ sort(record,record+n,cmp); result=greedy(n); }else{ result=-1; } cout<<"Case "<<ncase<<": "<<result<<endl; } return 0; }